Читаем Энциклопедический словарь юного математика полностью

Для сферических треугольников справедливы три известных в планиметрии признака равенства: по двум сторонам и углу между ними, по стороне и двум прилежащим к ней углам, по трем сторонам. На сфере справедлив еще один признак равенства треугольников - по трем углам. Подобных, но не равных между собой сферических треугольников не существует. Для сферических треугольников, однако, остаются справедливыми многие теоремы планиметрии, например теоремы о пересечении в одной точке серединных перпендикуляров к сторонам, биссектрис внутренних углов, медиан и даже высот, лишь с той разницей, что эти линии дают сразу по две диаметрально противоположные точки пересечения. Теоремы косинусов и синусов в сферической геометрии приобретают несколько необычный вид: для треугольника ABC с углами A,B,C и противолежащими сторонами соответственно a, b и c (напомним, что стороны измеряются как соответствующие центральные углы):

cos c = cos a·cos b + sin a·sin b·cos C (теорема косинусов)

и (теорема синусов).

Сферическая геометрия представляет собой своеобразный мост между планиметрией и стереометрией, так как сферические многоугольники получаются в пересечении сферы с многогранными углами с вершинами в центре сферы, сферические окружности - в пересечении сферы с коническими поверхностями и т.д. (рис. 4). Все теоремы о сферических треугольниках можно переформулировать в терминах трехгранных углов; в частности, две последние формулы часто называют теоремами косинусов и синусов для трехгранного угла (рис. 5).

Рис. 4

Рис. 5

Интересно, что исторически эти теоремы предшествовали аналогичным теоремам плоской тригонометрии, поскольку потребность людей в знаниях по астрономии, необходимых для исчисления времени, возникла прежде других потребностей человека, связанных с измерением углов. Исходя из геоцентрической гипотезы Вселенной, древнегреческие астрономы рассматривали Землю как шар, находящийся в центре небесной сферы, которая равномерно вращается около своей оси. При изучении закономерностей движения светил возникли многочисленные математические задачи, связанные со свойствами сферы и фигур, которые образуют на ней большие окружности.

Автором первого капитального сочинения о «сферике» - так называли сферическую геометрию древние греки - был, по-видимому, математик и астроном Евдокс Книдский (ок. 408-355 гг. до н.э.). Но самым значительным произведением была «Сферика» Менелая Александрийского, греческого ученого, жившего в I в., который обобщил результаты своих предшественников и получил большое количество новых результатов. Построена его книга аналогично «Началам» Евклида, и долгое время она служила учебником для астрономов. В IX-XIII вв. «Сферика», переведенная на арабский язык, внимательно изучалась математиками Ближнего и Среднего Востока, откуда в XII в., в переводе с арабского, стала известна в Европе.

Сферическая геометрия нужна не только астрономам, штурманам морских кораблей, самолетов, космических кораблей, которые по звездам определяют свои координаты, но и строителям шахт, метрополитенов, тоннелей, а также при геодезических съемках больших территорий поверхности Земли, когда становится необходимым учитывать ее шарообразность.


ТЕОРЕМА


Теорема - высказывание, правильность которого установлена при помощи рассуждения, доказательства. Примером теоремы может служить утверждение о том, что сумма величин углов произвольного треугольника равна 180°. Проверить это можно было бы опытным путем: начертить треугольник, измерить транспортиром величины его углов и, сложив их, убедиться, что сумма равна 180° (во всяком случае, в пределах той точности измерения, которую допускает транспортир). Такую проверку можно было бы повторить несколько раз для различных треугольников. Однако справедливость этого утверждения устанавливается в курсе геометрии не опытной проверкой, а при помощи доказательства, которое убеждает нас в том, что это утверждение справедливо для любого треугольника. Таким образом, утверждение о сумме углов треугольника является теоремой.


В формулировках теорем, как правило, встречаются слова «если..., то...», «из... следует...» и т.д. В этих случаях для сокращения записи используют знак . Возьмем в качестве примера теорему о том, что точка M, одинаково удаленная от двух точек A и B, принадлежит оси симметрии этих точек (рис. 1). Ее можно подробнее сформулировать так: (для любых точек A,B,M)  (M принадлежит оси симметрии точек A и B).

Рис. 1

Аналогичным образом могут быть записаны и другие геометрические теоремы: сначала идет разъяснительная часть теоремы (описывающая, какие точки или фигуры рассматриваются в теореме), а затем - два утверждения, соединенные знаком . Первое из этих утверждений, стоящее после разъяснительной части и перед знаком , называется условием теоремы, второе, стоящее после знака , называется заключением теоремы.

Перейти на страницу:

Похожие книги