Читаем Энциклопедический словарь юного математика полностью

Следствиями неравенства о среднем арифметическом и среднем геометрическом будут обобщения теорем 1) и 2) о максимуме произведения и минимуме суммы, на основе которых решаются многие задачи на экстремум: произведение n положительных чисел, при постоянной сумме, принимает наибольшее значение, когда все эти числа равны; сумма n положительных чисел, при постоянном произведении, принимает наименьшее значение, когда все эти числа равны. Обратим внимание, что среднее арифметическое, как и среднее квадратичное, имеет смысл не только для положительных, но и для произвольных чисел a1,a2,...,an, при этом справедливо неравенство m2≤d2. В случае, например, двух слагаемых оно принимает вид

и легко следует из тождественного неравенства (a1 - a2)2 ≥ 0. Неравенства для средних и сами средние широко применяются не только в алгебре, геометрии, математическом анализе, но и в статистике, в теории вероятностей (откуда пришло среднее квадратичное), при обработке результатов измерений.

Все рассмотренные средние являются частными случаями степенных средних: для положительных чисел a1,a2,...,an и отличного от нуля числа α степенным средним порядка α называется число

.

При α = -1,1,2 соответственно получается среднее гармоническое, среднее арифметическое и среднее квадратичное. При α = 0  A(α) не определено, однако можно показать, что при стремлении α к нулю A(α) стремится к среднему геометрическому, и потому можно считать S(0) средним геометрическим. Основное свойство степенных средних - это монотонность: S(α1) ≤ S(α2), если α1 < α2, в частности

S(-1) ≤ S(0) ≤ S(1) ≤ S(2).

Рассмотрим следующую процедуру. По двум положительным числам a и b составим их среднее арифметическое a1 = (a + b)/2 и среднее геометрическое , затем по числам a1 и b1 составим их среднее арифметическое a2 = (a1 + b1)/2 и среднее геометрическое . Продолжим этот процесс, определяя an и bn с помощью формул:

 и .

Образуются две последовательности чисел (an) и (bn). Например, если взяты числа a=1 и b=3, то первые члены последовательностей будут такие:

В приведенном примере последовательности (an) и (bn) очень быстро сближаются. В общем случае, как было показано немецким математиком К. Ф. Гауссом, последовательности (an) и (bn) приближаются друг к другу достаточно быстро и имеют общий предел. Предел этот называется арифметико-геометрическим средним чисел a и b. Он не выражается элементарно через a и b, однако не является и каким-то математическим курьезом, а находит многочисленные применения в ряде разделов математики.


СТЕПЕННАЯ ФУНКЦИЯ


Степенная функция - функция вида y=xα, где α - заданное число, называемое показателем степени. Иногда степенной функцией называется функция несколько более общего вида y=axα.


Многие функциональные зависимости выражаются через степенную функцию. Например, объем куба V есть степенная функция от x (длины его ребра): V = x3; период T колебаний математического маятника пропорционален длине маятника x в степени 1/2, а именно . Если газ расширяется или сжимается без теплообмена с окружающей средой, то его давление P и объем V связаны формулой V·Pk=C (для воздуха, например, k=-1,4). Заметим, что в двух последних случаях показатель не является целым числом.

При любом показателе степени α показательная функция y=xα определена во всяком случае на положительной полуоси. Свойства степенной функции различны в зависимости от значения показателя степени. Если α - натуральное число (α=n), то функция y = xn определена на всей числовой оси, обращается в нуль при x=0, четная при четном n и нечетная при n нечетном, неограниченно возрастает при безграничном возрастании аргумента x. На рис. 1 и 2 приведены графики типичных степенных функций с целым положительным показателем: y = x3 (кубическая парабола) и y = x4 (парабола четвертой степени). При n = 1 степенная функция y = x является линейной функцией, при n = 2 - квадратичной функцией y=x2.

Рис. 1

Рис. 2

Если α - отрицательное целое число (α = -n), то степенная функция определяется равенством y=1/xn. Она определена при всех отличных от нуля x. Ее график состоит из двух частей (ветвей), имеющих асимптотами оси координат, к которым эти кривые неограниченно приближаются. Типичные представители - функции y = 1/x и y=1/x2 их графики даны на рис. 3 и 4. При α = 0 по определению x0=1. Если α = 1/n, то функция y = x1/n (обозначается также ) определяется как обратная функция для функции y = xn. При четном n функция определена лишь для x ≥ 0, а при нечетном n - на всей оси. Графики таких функций  и  изображены на рис. 5 и 6.

Рис. 3

Рис. 4

Рис. 5

Рис. 6

Для рационального показателя α = p/q (p/q - несократимая дробь) степенная функция определяется формулой

y = xp/q = (x1/q)p.

Графики типичных степенных функций с рациональным показателем приведены на рис. 7, 8, 9.

Рис. 7

Рис. 8

Рис. 9


СФЕРА И ШАР


Перейти на страницу:

Похожие книги