Два целых числа, разность которых кратна данному натуральному числу m, называются сравнимыми по модулю m. (Слово «модуль» происходит от латинского modulus, что по-русски означает «мера», «величина».) Утверждение «a сравнимо с b по модулю m» обычно записывают в виде
Определение сравнения было сформулировано в книге К. Ф. Гаусса «Арифметические исследования». Эту работу, написанную на латинском языке, начали печатать в 1797 г., но книга вышла в свет лишь в 1801 г. из-за того, что процесс книгопечатания в то время был чрезвычайно трудоемким и длительным. Первый раздел книги Гаусса так и называется: «О сравнении чисел вообще».
Сравнениями очень удобно пользоваться в тех случаях, когда достаточно знать в каких-либо исследованиях числа с точностью до кратных некоторого числа. Например, если нас интересует, на какую цифру оканчивается куб целого числа a, то нам достаточно знать a лишь с точностью до кратных числа 10, и можно пользоваться сравнениями по модулю 10.
Поскольку сравнение по модулю m есть не что иное, как «равенство с точностью до кратных m», то многие свойства сравнений напоминают свойства равенств. Так, два сравнения по одинаковому модулю можно складывать, вычитать, перемножать так же, как и равенства: если
Поскольку два числа сравнимы по модулю m в том, и только в том, случае, если они дают при делении на m одинаковые остатки, то одним из простейших примеров использования сравнений является вывод признаков делимости. Покажем, как это делается в случае признака делимости на 3. Произвольное число n можно записать в виде
Приведем пример одной исключительно важной конструкции, к которой приводит понятие сравнения. Произвольное целое число при делении на данное натуральное число m дает в качестве остатка одно из чисел 0,1,...,m-1. Объединим в один класс числа, дающие остаток 0 при делении на m, в другой класс - числа, которые при делении на m дают остаток 1, в следующий класс - числа, дающие остаток 2, и т.д. Все целые числа разобьются на m классов. Числа, попавшие в один класс, сравнимы по модулю m, а в разные классы - несравнимы. Получившиеся классы чисел называются классами вычетов по модулю m или просто классами по модулю m. Класс, содержащий число k, обозначают k̅. Так, по модулю 2 имеется два класса: 0̅ и 1̅; класс 0̅ состоит из всех четных чисел, а класс 1̅ - из всех нечетных чисел. У класса 0̅ есть и другие обозначения, например 2̅, 4̅,
Эти таблицы являются другой формой записи известных правил: сумма четных чисел четна, а сумма нечетного и четного чисел нечетна; произведение четного числа на любое целое число - четное число и т.д.
Классы вычетов по модулю m в случае простого модуля образуют поле.
Сравнения можно рассматривать не только для целых чисел, но и для некоторых других математических объектов. Например, для многочленов f(x),
СРЕДНИЕ ЗНАЧЕНИЯ