Многие свойства тетраэдров сходны с соответствующими свойствами треугольников. В частности, 6 плоскостей, проведенных через середины ребер тетраэдра перпендикулярно к ним, пересекаются в одной точке. В этой же точке O пересекаются и 4 прямые, проведенные через центры описанных около граней окружностей перпендикулярно к плоскостям граней, и O является центром описанной около тетраэдра сферы (рис. 1). Аналогично 6 биссекторных полуплоскостей тетраэдра, т. е. полуплоскостей, делящих двугранные углы при ребрах тетраэдра пополам, тоже пересекаются в одной точке - в центре вписанной в тетраэдр сферы - сферы, касающейся всех четырех граней тетраэдра. Любой треугольник имеет, вдобавок к вписанной, еще 3 вневписанные окружности (см. Треугольник), а вот тетраэдр может иметь любое число – от 4 до 7 - вневписанных сфер, т.е. сфер, касающихся плоскостей всех четырех граней тетраэдра. Всегда существуют 4 сферы, вписанные в усеченные трехгранные углы, один из которых показан на рис. 2, справа. Еще 3 сферы могут быть вписаны (не всегда!) в усеченные двугранные углы при ребрах тетраэдра - один из них показан на рис. 2, слева.
Рис. 1
Рис. 2
Для тетраэдра существует еще одна возможность его взаимного расположения со сферой - касание с некоторой сферой всеми своими ребрами (рис. 3). Такая сфера - иногда ее называют «полувписанной» - существует лишь в том случае, когда суммы длин противоположных ребер тетраэдра равны:
Рис. 3
Для любого тетраэдра справедлив аналог теоремы о пересечении медиан треугольника в одной точке. Именно, 6 плоскостей, проведенных через ребра тетраэдра и середины противолежащих ребер, пересекаются в одной точке - в центроиде тетраэдра (рис. 4). Через центроид M проходят также 3 «средние линии» - отрезки, соединяющие середины трех пар противоположных ребер, причем они делятся точкой M пополам. Наконец, через M проходят и 4 «медианы» тетраэдра - отрезки, соединяющие вершины с центроидами противолежащих граней, причем они делятся в точке M в отношении 3:1, считая от вершин.
Рис. 4
Важнейшее свойство треугольника - равенство
Треугольники принято классифицировать по степени их симметричности: правильные или равносторонние треугольники имеют три оси симметрии, равнобедренные - одну. Классификация тетраэдров по степени симметричности богаче. Самый симметричный тетраэдр - правильный, ограниченный четырьмя правильными треугольниками. Он имеет 6 плоскостей симметрии - они проходят через каждое ребро перпендикулярно противолежащему ребру - и 3 оси симметрии, проходящие через середины противолежащих ребер (рис. 5). Менее симметричны правильные треугольные пирамиды (3 плоскости симметрии, рис. 6) и равногранные тетраэдры (т.е. тетраэдры с равными гранями - 3 оси симметрии, рис. 7).
Рис. 5
Рис. 6
Рис. 7
В заключение приведем две формулы для вычисления объема тетраэдра. Они не очень похожи на известные формулы для площади треугольника, но некоторую аналогию можно все-таки проследить.
1)
где высота
2)
где
ТОЖДЕСТВО
Тождество - запись вида
Например, равенство
является тождеством (на множестве всех действительных чисел). Это тождество позволяет построить бесконечно много прямоугольных треугольников с целыми сторонами. Например, при
также является тождеством на множестве всех действительных чисел; из него вытекает, в частности, что при целых m и n число
Будет ли равенство