В 1884 г. Марков защитил докторскую диссертацию, посвященную непрерывным дробям, в которой доказал и обобщил некоторые неравенства Чебышева, опубликованные раньше без доказательств. Маркову принадлежат также многочисленные работы по различным разделам математического анализа. В 1890 г. за глубокие научные исследования Марков был избран академиком Петербургской академии наук.
С конца 90-х гг. XIX в. главным предметом исследований ученого стала теория вероятностей. Здесь он продолжил работу своего учителя П. J1. Чебышева и ввел новый объект исследования – последовательности зависимых случайных величин, получившие в дальнейшем название марковских цепей. Так называют последовательности случайных величин, для которых вероятность появления того или иною значения на
Марковские цепи сразу после их открытия не нашли практических приложений, и ученому пришлось применять свои результаты к распределению гласных и согласных букв в поэме А. С. Пушкина «Евгений Онегин». Ведь за согласной чаще идет гласная, а за гласной – согласная, и в первом приближении можно считать, что вероятность появления гласной на
А. А. Марков был страстным и убежденным борцом против произвола и несправедливости царского режима, выступал против попыток подчинить преподавание математики в школе религиозным взглядам. Он отказался от царских орденов, подал в Синод просьбу об отлучении от церкви, указав в ней, что не сочувствует всем религиям, которые, подобно православию, поддерживаются огнем и мечом и сами служат им. Резкие выпады против веры в чудеса содержатся в учебнике А. А. Маркова «Исчисление вероятностей», опубликованном в дореволюционное время. После выхода книги ученого обвинили в безбожии и «подрыве основ». От преследований его избавил лишь крах царского режима.
------------------------------------------
В теории вероятностей и ее применениях важную роль играют числовые характеристики случайных величин – математическое ожидание и дисперсия. Мы дадим их определение для дискретных случайных величин. Пусть
называется математическим ожиданием
П.Л. Чебышев доказал закон больших чисел в очень общей форме, а именно: пусть
Вторая предельная теорема получила наименование теоремы Ляпунова, или центральной предельной теоремы: если случайные величины
где
Эта теорема является значительным обобщением интегральной теоремы Муавра-Лапласа.
В нашем веке в связи с физическими, биологическими, инженерными и другими исследованиями возникла необходимость рассматривать случайные процессы
Теория случайных процессов в наши дни является одним из основных математических средств изучения явлений реального мира.
Первые задачи теории вероятностей были рассмотрены Л. Пачоли (1445-ок. 1514), Д. Кардано (1501-1576), Н. Тарталья (ок. 1499-1557), Б. Паскалем (1623-1662), П. Ферма (1601-1665), X. Гюйгенсом (1629-1695). В качестве самостоятельной научной дисциплины теория вероятностей стала оформляться в работах Я. Бернулли (1654-1705), А. Муавра (1667-1754), П. Лапласа (1749-1827), С. Пуассона (1781-1840). Ее последующее развитие связано с именами П. Л. Чебышева, А. А. Маркова, А. М. Ляпунова (1857-1918), А. Я. Хинчина (1894-1959), С. Н. Бернштейна (1880-1968), А. Н. Колмогорова (1903-1987) и других.
ВИВИАНИ КРИВАЯ