Читаем Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности полностью

Для исследования этого вопроса Руди Джениш создал линию мышей, в клетках которых белок Dnmt1 экспрессировался приблизительно лишь на 10 процентов. Уровни метилирования ДНК в их клетках были очень низкими по сравнению с аналогичными показателями обычных мышей. У этих мышей с мутировавшим геном Dnmt1, рождавшихся мелкими и слабыми, в возрасте между четвертым и восьмым месяцами развивались агрессивные новообразования иммунной системы (Т-клеточные лимфомы). Это было связано с перестановками определенных хромосом и, особенно, в дополнительной копии хромосомы 15 раковых клеткок.

Профессор Джениш предположил, что низкие уровни метилирования ДНК делают хромосомы очень нестабильными и подверженными разрывам. Вследствие этого, возрастает опасность того, что хромосомы могут соединиться неверно. Представьте, что вы разломали пополам розовую и зеленую карамельную конфету, получив в итоге четыре кусочка. Вы можете снова вернуть им первоначальный вид, склеив расплавленным сахаром, и тем самым получить новые две единицы способствующего развитию кариеса лакомства. Но, если вы будете заниматься этим в темноте, то возможно у вас получится некий «гибрид», в котором одна половинка будет зеленой, а другая розовой.

Конечным результатом повышения хромосомной нестабильности у мышей Руди Джениша стала аномальная экспрессия генов. Это, в свою очередь, повлекло за собой стремительное разрастание в высшей степени агрессивных клеток, что и привело к раку[238][239]. Эти данные и является одной из причин, по которым ингибиторы ДНМТ едва ли могут быть использованы для лечения каких-либо иных, кроме рака, заболеваний. Опасность их в том, что эти препараты могут вызвать снижение метилирования ДНК в здоровых клетках, а это может вызвать предрасположенность некоторых типов клеток к раку.

Эти данные свидетельствуют, что сам по себе уровень метилирования ДНК не является важным фактором. Куда большее значение имеет то, где именно в геноме происходят изменения в метилировании ДНК.

Общее снижение уровней метилирования ДНК, сопутствующее старению, было обнаружено не только у людей и мышей, но также и у представителей многих других видов, от крыс до горбуш[240]. Пока еще нет полной ясности в вопросе, почему низкие уровни метилирования ДНК ассоциируются с нестабильностью генома. Возможно, дело в том, что высокие уровни метилирования ДНК могли бы привести к очень компактному строению ДНК, которая структурно стала бы более стабильной. В конце концов, значительно легче перекусить кусачками одну жилу проволоки, чем несколько жил, сплетенных в прочный металлический жгут.

Важно представлять себе, какие титанические усилия прилагают клетки для заботы о своих хромосомах. Когда хромосома рвется, клетка, если это возможно, мгновенно «латает» разрыв. Если же такой возможности у нее нет, то она может запустить механизм саморазрушения, в конечном итоге приводящий к ее «самоубийству». Происходит это потому, что поврежденные хромосомы могут быть опасными. Лучше убить одну клетку, чем позволить ей выжить, неся в себе поврежденный генетический материал. Например, представьте себе, что в одной клетке рвется одна копия хромосомы 9 и одна копия хромосомы 22. Они могут быть починены надлежащим образом, но может случиться и так, что в результате этого ремонта часть хромосомы 9 соединится с частью хромосомы 22.

На самом деле подобная перестройка хромосом 9 и 22 случается относительно часто в клетках иммунной системы. Более того, она происходит настолько часто, что этот гибрид хромосомы 9 и хромосомы 22 стал обозначаться особым термином. Он называется филадельфийской хромосомой, в честь города, где был впервые описан. 95 процентов людей, больных разновидностью рака, которая называется хронической гранулоцитарной лейкемией, имеют в своих раковых клетках филадельфийскую хромосому. Эта аномальная хромосома вызывает такой вид рака в клетках иммунной системы по той причине, что разрыв и воссоединение хромосом происходит в определенном месте генома. Соединение двух хромосомных участков приводит к созданию гибридного гена под названием Bcr-Abl, который активно вызывает чрезвычайно быстрое деление клеток.

Таким образом, наши клетки сформировали очень сложные и безотлагательные способы немедленного восстановления разорвавшихся хромосом, призванные уберечь их от подобного рода аномальных слияний. А для этого клетки должны уметь распознавать свободные концы ДНК, которые образуются, когда хромосома распадается надвое.

Однако не все так просто. Каждая хромосома в наших клетках вполне естественным образом имеет два свободных конца ДНК, по одному с каждой стороны. И что-то должно не позволять восстановительной механике ДНК считать, что эти концы нуждаются в ремонте. Этим «чем-то» является узкоспециализированная структура, которая называется теломером. На каждом конце каждой хромосомы находится по одному теломеру, то есть в каждой клетке человека содержится по 92 теломера. Именно они блокирует механизм восстановления ДНК на концах хромосом.

Конечные участки

Перейти на страницу:

Все книги серии живая линия

Спящая красавица
Спящая красавица

«Спящая красавица» - третье по счету произведение довольно громкого автора Дмитрия Бортникова. Со своим первым романом «Синдром Фрица» он в 2002 году вошел в шорт-листы «Нацбеста» и «Букера», известен переводами за рубежом. Чтение крайне энергетическое и страстное, шоковое даже. Почти гениальный микст Рабле, Платонова, Лимонова и Натали Саррот - и при этом с внятным скандальным сюжетом. Роман, о котором будет написано великое множество противоречивых рецензий и который способен затронуть наиболее интимные процессы любого читателя. Лирический и страстный текст финалиста премии "Национальный бестселлер", ныне живущего во Франции. Беспощадно резкая критика современной российской провинции, невероятное напряжение чувств, лилии и экскременты. Работа Бортникова с языком без пяти минут гениальна. "Спящая красавица" - это книга, которая отпечатывается в памяти навсегда.

Дмитрий Бортников , Дмитрий Святославович Бортников

Проза / Современная русская и зарубежная проза / Современная проза
Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности
Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности

Расшифровка уникального кода ДНК Homo sapiens долгие годы было для ученых непосильной задачей. В 1990 году был запущен международный научно-исследовательский проект «Геном человека», результатом работы которого в 2003 году стало полное описание структуры генома человеческого вида. Выяснилось, что клетки воспринимают генетический код как некое общее руководство к действию, а не шаблон, позволяющий каждый раз получать один и тот же результат. Изменениями в геноме, не затрагивающими последовательность ДНК, и занимается эпигенетика — прогрессивное, динамично развивающееся направление биологии.Nessa Carey. The Epigenetics Revolution. How modern biology is rewriting our understanding of genetics, disease and inheritance

Несса Кэри

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Зачем мы говорим. История речи от неандертальцев до искусственного интеллекта
Зачем мы говорим. История речи от неандертальцев до искусственного интеллекта

Эта книга — захватывающая история нашей способности говорить. Тревор Кокс, инженер-акустик и ведущий радиопрограмм BBC, крупным планом демонстрирует базовые механизмы речи, подробно рассматривает, как голос определяет личность и выдает ее особенности. Книга переносит нас в прошлое, к истокам человеческого рода, задавая важные вопросы о том, что может угрожать нашей уникальности в будущем. В этом познавательном путешествии мы встретимся со специалистами по вокалу, звукооператорами, нейробиологами и компьютерными программистами, чей опыт и научные исследования дадут более глубокое понимание того, что мы обычно принимаем как должное.

Тревор Кокс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения