Однако мы пока не выяснили, каким образом пусть даже двадцать аминокислот могут быть закодированы всего лишь четырьмя основаниями ДНК. Дело в том, что механизм клетки «считывает» ДНК блоками по три пары оснований за раз. Каждый блок, состоящий из трех пар оснований, называется кодон и может выглядеть как А А А, ГЦГ или любая другая комбинация А, Ц, Г и Т. Из всего лишь четырех оснований можно создать шестьдесят четыре различных кодона, и этого количества будет более чем достаточно для двадцати аминокислот. Некоторые аминокислоты закодированы более чем одним кодоном. Например, аминокислота под названием лизин закодирована кодонами ААА и ААГ. Некоторые кодоны вообще не занимаются кодированием аминокислот. Они служат сигналами, сообщающими механизму клетки о завершении кодирования последовательности белков. Такие кодоны называются терминирующими кодонами или терминаторами.
Как именно ДНК в наших хромосомах выполняет функции сценария для производства белков? Делает она это при помощи белка-посредника, молекулы, которая называется матричной РНК (мРНК). мРНК очень похожа на ДНК, хотя и отличается от нее в некоторых существенных деталях. Ее основная цепочка слегка отлична от ДНК (поэтому она и называется РНК, что означает рибонуклеиновая, а не дезоксирибонуклеиновая, кислота); она является одноцепочечной (так как состоит лишь из одной цепочки); вместо основания Т в ней находится очень похожее, но все же отличающееся от него основание У (сейчас нам нет необходимости вдаваться в подробности, почему это происходит и к чему приводит). Когда «прочитывается» определенный участок ДНК, чтобы на основании этого сценария был произведен некий белок, громадный комплекс белков «отстегивает» нужную часть ДНК и делает копии мРНК. При этом комплекс пользуется принципом спаривания оснований, поэтому сделанные им копии мРНК идеальны. После этого молекулы мРНК используются в качестве временных шаблонов в специализированных структурах клетки, ответственных за производство белков. Они прочитывают трехбуквенный код кодона и связывают вместе требуемые аминокислоты для образования более длинных белковых цепочек. Весь этот процесс, конечно, намного сложнее, но принцип его именно такой.
Возможно, эта механика станет более понятной, если мы в очередной раз воспользуемся аналогиями из нашей повседневной жизни. Процесс поступательного движения от ДНК к мРНК и к белку можно сравнить с обработкой изображения, полученного с помощью цифрового фотоаппарата. Допустим, своей цифровой камерой мы сделали снимок просто невероятно прекрасного пейзажа. Мы хотим, чтобы другие люди имели к нему доступ, но при этом ни в коем случае не могли бы вносить в него какие-либо изменения. Исходный файл на нашей камере — это чертеж ДНК. Мы копируем его в другой формат, который нельзя подвергнуть обработке — пусть это будет, скажем, PDF, — а потом по электронной почте рассылаем тысячи копий этого файла в формате PDF всем, кто только проявит интерес к нашей работе. Файл PDF — это матричная РНК. Любой желающий, будь на то его воля, сможет распечатывать бумажные копии этого файла PDF в каких угодно количествах, и эти бумажные копии являются белками. Так что каждый человек в мире сможет распечатать наш снимок, но файл с его оригиналом — только один.
Но зачем столько сложностей, почему бы ни передавать информацию напрямую? Существуют несколько веских причин, по которым эволюция отдает предпочтение именно такому витиеватому методу. Одна из них заключается в том, чтобы предотвратить порчу сценария, файла с оригинальным изображением. Когда ДНК «расстегивается», она становится относительно уязвимой для изменений, и в процессе эволюции клетки научились защищать ее от этой опасности. Непрямой способ передачи информации, при котором ДНК кодирует белки, минимизирует отрезок времени, когда определенный участок ДНК остается открытым и уязвимым. Другая причина, по которой именно такой способ передачи информации выбран эволюцией, состоит в том, что он позволяет определять необходимые количества конкретных белков, вырабатываемых в ходе этого процесса, что называется пластичностью.
Рассмотрим в качестве примера белок, который называется алкоголь дегидрогеназа (АДГ). Он вырабатывается в печени и расщепляет алкоголь. Если мы принимаем алкоголь в больших количествах, клетки нашей печени увеличивают объемы производимой ею АДГ. Когда же мы перестаем пить спиртное, печень вырабатывает меньшие количества этого белка. В этом и заключается одна из причин, по которой пьющие часто люди реагируют на воздействие алкоголя значительно медленнее пьющих изредка, которые начинают клевать носом уже после пары бокалов легкого вина. Чем чаще мы пьем спиртное, тем больше белка АДГ вырабатывает наша печень (до определенной границы). Но делают это клетки печени, не увеличивая количество копий гена