Но другие клетки ведут себя совсем иначе. Клетки верхнего слоя кожи, эпидермы, полностью заменяются приблизительно каждые пять недель в результате постоянного деления стволовых клеток в более глубоких слоях этой ткани. Из этих стволовых клеток всегда получаются только новые клетки кожи, а не, например, клетки мышц. Таким образом, система, поддерживающая определенные наборы генов в активированном или репрессированном состоянии, должна, кроме того, обладать механизмом, который может передаваться от родительской к дочерней клетке при каждом делении.
Возникает парадокс. С момента опубликования в середине 1940-х годов работы Освальда Эйвери и его коллег исследователям известно, что ДНК является клеточным веществом, переносящим нашу генетическую информацию. Если ДНК всегда одинакова в разных типах клеток человека, то, как могут невероятно точные комбинации экспрессии генов передаваться друг другу многими поколениями клеток при их делении?
И снова на помощь нам приходит уже ставшая привычной аналогия с актерами, читающими сценарий. Баз Дурман вручает Леонардо Ди Каприо шекспировский текст «Ромео и Джульетты», на котором режиссер написал от руки или напечатал собственные примечания — как расположить актеров, куда поставить камеру и много другой дополнительной рабочей информации. Лео делает себе фотокопию сценария, и все добавленные Базом Лурманом пометки копируются вместе с ним. Клэр Дейнз также получает свой экземпляр сценария «Ромео и Джульетты». Комментарии режиссера на нем иные, чем на сценарии ее партнера, и этот вариант текста пьесы также копируется. Вот таким образом и осуществляется эпигенетическая регуляция экспрессии генов — разные клетки имеют одинаковый чертеж ДНК (оригинальную авторскую пьесу), но несут в себе различные молекулярные модификации (режиссерский сценарий), которые при каждом делении клетки могут передаваться от материнской клетки к дочерней.
Эти модификации ДНК ничуть не меняют изначальную природу А, Ц, Г и Т в нашем генетическом сценарии, в нашем чертеже. Когда какой-либо ген активируется и копируется для образования мРНК, эта мРНК обладает точно такой же последовательностью, контролируемой правилами спаривания оснований, независимо от того, несет или нет этот ген в себе некие эпигенетические дополнения, Точно так же, когда ДНК копируется, чтобы образовать новые хромосомы для деления клетки, именно те же последовательности А, Ц, Г и Т копируются вместе с ней.
Но если эпигенетические модификации не меняют информацию, которую несут в себе гены, то для чего же они служат? Главным образом, они способны очень резко повлиять на то, насколько ярко будет экспрессироваться ген, и будет ли он экспрессироваться вообще. Эпигенетические модификации также могут передаваться следующим поколениям клеток при их делении, и благодаря этому механизм регуляции экспрессии генов в дочерней клетке остается тем же, каким он был в материнской клетке. Именно по этой причине стволовые клетки кожи могут развиться только в новые клетки кожи, но не в клетки какого-либо другого типа.
Первой обнаруженной эпигенетической модификацией было метилирование ДНК. Метилирование означает добавление метиловой группы к какому-либо другому химическому соединению, в данном случае к ДНК. Метиловая группа чрезвычайно крошечная. Она состоит всего лишь из одного атома углерода, присоединенного к трем атомам водорода. Ученые — химики описывают атомы и молекулы исходя из их молекулярной массы, причем атом каждого элемента имеет собственную, отличную от других атомов массу. В среднем, молекулярная масса пары оснований составляет около 600 Да (Да — это сокращение от «Дальтон», единицы измерения молекулярной массы). Метиловая группа имеет молекулярную массу всего лишь 15 Да. При присоединении метиловой группы масса пары оснований увеличивается на 2,5 процента. Это можно сравнить с приклеиванием виноградинки к теннисному мячу.
На рисунке 4.1 можно увидеть, как выглядит метилирование ДНК с точки зрения химии.