Рис. 4.2. На этой схеме показано, каким образом может быть сохранена модель метилирования ДНК при ее репликации. Метиловая группа представлена черным кружком. После разделения двойной спирали родительской ДНК на этапе 1 и репликации обеих цепочек ДНК на этапе 2 новые цепочки «проверяются» ферментом ДНК-метилтрансфераза 1 (DNMT1). DNMT1 может определить, что метиловая группа на каком-либо цитозиновом мотиве одной цепочки молекулы ДНК не соответствует только что синтезированной цепочке. Тогда DNMT1 переносит метиловую группу на новую цепочку (этап 3). Это происходит только в тех случаях, когда основания Ц и Г стоят друг за другом в мотиве CpG. Благодаря этому процессу обеспечивается сохранение модели метилирования ДНК при ее репликации и делении клетки.
DNMT1 способен определить, метилирован ли мотив CpG только на одной цепочке. Когда DNMT1 обнаруживает этот дисбаланс, он восстанавливает «пропущенное» метилирование на только что скопированной цепочке. Таким образом, дочерние клетки в итоге получат те же модели метилирования ДНК, какие были у родительской клетки. Как следствие, они будут подавлять те же гены, что и родительская клетка, и клетки кожи всегда будут оставаться клетками кожи.
Эпигенетика имеет обыкновение проявлять свое влияние там, где ученые никогда и не ожидали. Один из наиболее интересных примеров этого за последние годы непосредственно связан с МеСР2, белком, считывающим метки метилирования ДНК. Несколько лет назад широкой популярностью пользовалась ныне дискредитировавшая себя теория о том, что вакцина против кори вызывает аутизм, и самые разные СМИ уделяли ей просто невиданное внимание. Одна весьма уважаемая британская газета в мельчайших подробностях описывала на своих страницах вызывающую дрожь историю некой маленькой девочки. В младенческом возрасте ей были сделаны все обычные в таких случаях прививки. Вскоре после прививки от кори, которую она получила незадолго до своего первого дня рождения, она начала быстро деградировать, утрачивая большую часть навыков, которые успела приобрести к тому времени. На момент написания статьи девочка приближалась уже к четырехлетнему возрасту, и автор газетной публикации уверял, что ей присущи такие тяжелые симптомы аутизма, которых ему прежде не доводилось и видеть. У нее не развивалась речь, обнаруживалась устойчивая неспособность к обучению, а те немногие действия, которые ей давались, отличались итеративностью (например, она уже не тянула ручку за едой). Прогрессирование этого невероятно тяжелого заболевания, несомненно, было настоящей трагедией и для нее, и для ее семьи.
Но читатель, хоть сколько-нибудь сведущий в нейрогенетике, при изучении этой статьи непременно обратил бы внимание на два момента. Первая странность заключалась в том, что для девочек очень нехарактерно — не то что бы невозможно, но крайне маловероятно — демонстрировать такую тяжелую форму аутизма. В значительно большей степени это свойственно мальчикам. Второй факт, который должен был озадачить их, состоял в том, что описанные симптомы в мельчайших деталях соответствовали признакам редкого генетического заболевания, именуемого синдромом Ретта, вплоть до нормального развития в первые месяцы жизни и временем проявления характерных для этого недуга явлений. Лишь случайным совпадением является то, что симптомы синдрома Ретта, как, впрочем, и большинства типов аутизма, впервые обнаруживаются примерно в том самом возрасте, когда младенцам обычно делают прививку против кори.
Но какое отношение эта история имеет к эпигенетике? В 1999 году группа ученых, возглавляемая выдающимся нейрогенетиком Худой Зогби, из Медицинского института Говарда Хьюза в Мэриленде убедительно продемонстрировала, что большинство случаев синдром Ретта вызываются мутациями в