Результаты этих экспериментов настолько важны по той причине, что они дают нам обоснованную надежду на то, что мы сможем найти новые способы лечения больных, страдающих тяжелыми формами неврологических недугов. До появления этой статьи в журнале
Совершенно ясно, почему такое огромное значение имеет метилирование ДНК. Ошибки в прочтении метилирования ДНК могут привести к тяжелым и разрушительным неврологическим расстройствам, делающим детей, пораженных симптомом Ретта, инвалидами на всю жизнь. Метилирование ДНК также чрезвычайно важно для сохранения правильной модели экспрессии генов в клетках различных типов — ив существующих на протяжении нескольких десятилетий долгожителях-нейронах, и во всем потомстве стволовых клеток таких постоянно меняющихся тканей как, например, кожа.
Но мы пока так и не решили концептуальную проблему Нейроны кардинально отличаются от клеток кожи. Если оба типа клеток прибегают к метилированию ДНК для подавления определенных генов и для сохранения их в таком состоянии, значит, этому процессу подвергаются разные наборы генов. В противном случае, экспрессировались бы всегда одни и те же гены в одинаковой степени, и тогда они неизбежно порождали бы одни и те же типы клеток, а не нейроны и клетки кожи.
Ключ к ответу на вопрос, как два типа клеток могут использовать один и тот же механизм для получения настолько разных результатов, лежит в понимании того, каким образом метилирование ДНК затрагивает различные области генома в клетках разных типов. А это отсылает нас ко второй глобальной области молекулярной эпигенетики. К белкам.
ДНК часто описывается как некая обособленная молекула, то есть это ДНК и ничего больше. Если мы попытаемся представить ее себе, то двойная спираль ДНК в нашем воображении, скорее всего, будет выглядеть как очень длинное и закрученное вокруг своей оси железнодорожное полотно. Собственно, так мы ее и описывали в предыдущей главе. Однако действительность разительно отличается от таких представлений, и многие гениальные прорывы в эпигенетике случались именно тогда, когда ученые начинали в полной мере осознавать эти различия.
ДНК тесно связана с белками, особенно с теми из них, которые называются гистонами. Сегодня главное внимание в эпигенетике и регуляции генов сосредоточено на четырех конкретных гистоновых белках, а именно Н2А, Н2В, H3 и Н4. Эти гистоны имеют так называемую глобулярную структуру, поскольку они упаковываются в компактную шарообразную форму. Но у каждого такого шарика есть также подвижная свободная цепочка аминокислот, которая называется гистоновым отростком. Два экземпляра каждого из этих четырех гистоновых белков группируются вместе и образуют плотную структуру, называемую гистоновым октамером (этим наименованием он обязан именно тому, что состоит из восьми отдельных гистонов).
Пожалуй, проще будет представить себе этот октамер как восемь шариков для настольного тенниса, расположенных двумя слоями по четыре шарика один на другом. ДНК туго обвивает это белковое образование, подобно длинному побегу лакричника, заключившему в свои объятия алтей{1}, и образует структуру, которая называется нуклеосомой. Вокруг каждой нуклеосомы обернуты 147 пар оснований ДНК. На рисунке 4.3 показана очень упрощенная схема строения нуклеосомы, на которой белая лента изображает ДНК, а серые завитки представляют гистоновые отростки.