Главная идея, которую нам нужно уловить на этом этапе, состоит в представлении о том, каким образом волны экспрессии генов и эпигенетических модификаций следуют друг за другом и вытекают друг из друга. Подходящей аналогией для проникновения в суть этого процесса для нас может стать игра «Мышеловка», впервые появившаяся в начале 1960-х годов, но продолжающая пользоваться популярностью и в наши дни. В ходе игры ее участники должны построить безумно сложную мышеловку. Чтобы активировать мышеловку, в нее нужно запустить шарик. Этот шарик прокатывается через самые разнообразные и хитроумные приспособления, которыми могут быть и горка, и катапульта, и ряд ступенек, и человечек, прыгающий в воду с трамплина. Если все до единой детали головоломки размещены относительно друг друга правильно, то эта головокружительная конструкция работает как часы, и игрушечная мышка оказывается захваченной в сети. Но если лишь один ее элемент стоит чуть-чуть не на своем месте, то он выбивается из общего ряда, вся последовательность нарушается, и ловушка не срабатывает.
Развитие эмбриона во многом похоже на эту игру. Зигота заранее загружена определенными белками, полученными главным образом из цитоплазмы яйцеклетки. Эти приобретенные из яйцеклетки белки проникают в ядро, в котором прикрепляются к своим целевым генам (которые мы в честь «Мышеловки» будем называть «катапультами») и регулируют их экспрессию. Кроме этого, они притягивают к генам «катапульт» некоторые выбранные ими эпигенетические ферменты, Эти эпигенетические ферменты также могут быть позаимствованы в цитоплазме яйцеклетки, и они вызывают более продолжительные модификации ДНК и гистоновых белков хроматина, одновременно влияя и на то, как активируются или подавляются эти «катапультные» гены. Белки «катапульт» прикрепляются к генам «ныряльщиков» и активируют их. Некоторые гены «ныряльщиков» сами могут кодировать эпигенетические ферменты, что оказывает уже свое влияние на членов семейства генов «горок» и так далее. Генетические и эпигенетические белки работают в безупречно упорядоченном режиме, аналогично тому, как это происходит в «Мышеловке» после того, как в нее запускается шарик.
Иногда фактор, экспрессия которого «балансирует на грани тонко настроенного равновесия, экспрессируется клеткой с небольшим отклонением в одну или другую сторону. В этом случае возникает вероятность изменения пути развития, по которому движется клетка, как могло бы быть, если двадцать «Мышеловок» соединить друг с другом. Едва уловимые отклонения в том, как элементы головоломки соотносятся друг с другом или, как катится шарик в критические моменты, способны активировать одну ловушку и отключить другую.
Примеры в предложенной аналогии придуманы нами, но мы можем рассматривать их как реально существующие. Одним из ключевых белков на самых ранних стадиях эмбрионального развития является Oct4. Белок Oct4 присоединяется к определенным ключевым генам и одновременно притягивает конкретный эпигенетический фермент. Этот фермент модифицирует хроматин и меняет регуляцию гена. И Oct4, и эпигенетический фермент, с которым тот взаимодействует, жизненно важны для эмбриона на ранних стадиях его развития. Если один из них отсутствует, зигота не сможет развиться даже до того, чтобы сформировать ВКМ.
Схемы экспрессии генов на ранних этапах развития эмбриона, в конечном счете, регулируются автоматически. Когда экспрессируются определенные белки, они могут связаться с промотором Oct4 и подавить экспрессию этого гена. В обычных условиях соматические клетки не экспрессируют Oct4. Это было бы для них слишком опасно, поскольку Oct4 мог бы нарушить нормальную схему экспрессии генов в дифференцированных клетках и превратить их в некое подобие стволовых клеток.
Именно это и проделал Шинья Яманака, когда использовал Oct4 в качестве перепрограммирующего фактора. Искусственно создав очень высокие уровни содержания Oct4 в дифференцированных клетках, он сумел «обмануть» клетки и вынудить их вести себя так, как будто они находились на ранних стадиях развития. Даже эпигенетические модификации были аннулированы — вот насколько велика сила этого гена.
Нормальное развитие предоставляет нам важные доказательства необходимости эпигенетических модификаций для контроля участи клетки. Не менее наглядно демонстрируют нам значение эпигенетики и те случаи, когда развитие идет по неверному пути.