Читаем Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности полностью

Главная идея, которую нам нужно уловить на этом этапе, состоит в представлении о том, каким образом волны экспрессии генов и эпигенетических модификаций следуют друг за другом и вытекают друг из друга. Подходящей аналогией для проникновения в суть этого процесса для нас может стать игра «Мышеловка», впервые появившаяся в начале 1960-х годов, но продолжающая пользоваться популярностью и в наши дни. В ходе игры ее участники должны построить безумно сложную мышеловку. Чтобы активировать мышеловку, в нее нужно запустить шарик. Этот шарик прокатывается через самые разнообразные и хитроумные приспособления, которыми могут быть и горка, и катапульта, и ряд ступенек, и человечек, прыгающий в воду с трамплина. Если все до единой детали головоломки размещены относительно друг друга правильно, то эта головокружительная конструкция работает как часы, и игрушечная мышка оказывается захваченной в сети. Но если лишь один ее элемент стоит чуть-чуть не на своем месте, то он выбивается из общего ряда, вся последовательность нарушается, и ловушка не срабатывает.

Развитие эмбриона во многом похоже на эту игру. Зигота заранее загружена определенными белками, полученными главным образом из цитоплазмы яйцеклетки. Эти приобретенные из яйцеклетки белки проникают в ядро, в котором прикрепляются к своим целевым генам (которые мы в честь «Мышеловки» будем называть «катапультами») и регулируют их экспрессию. Кроме этого, они притягивают к генам «катапульт» некоторые выбранные ими эпигенетические ферменты, Эти эпигенетические ферменты также могут быть позаимствованы в цитоплазме яйцеклетки, и они вызывают более продолжительные модификации ДНК и гистоновых белков хроматина, одновременно влияя и на то, как активируются или подавляются эти «катапультные» гены. Белки «катапульт» прикрепляются к генам «ныряльщиков» и активируют их. Некоторые гены «ныряльщиков» сами могут кодировать эпигенетические ферменты, что оказывает уже свое влияние на членов семейства генов «горок» и так далее. Генетические и эпигенетические белки работают в безупречно упорядоченном режиме, аналогично тому, как это происходит в «Мышеловке» после того, как в нее запускается шарик.

Иногда фактор, экспрессия которого «балансирует на грани тонко настроенного равновесия, экспрессируется клеткой с небольшим отклонением в одну или другую сторону. В этом случае возникает вероятность изменения пути развития, по которому движется клетка, как могло бы быть, если двадцать «Мышеловок» соединить друг с другом. Едва уловимые отклонения в том, как элементы головоломки соотносятся друг с другом или, как катится шарик в критические моменты, способны активировать одну ловушку и отключить другую.

Примеры в предложенной аналогии придуманы нами, но мы можем рассматривать их как реально существующие. Одним из ключевых белков на самых ранних стадиях эмбрионального развития является Oct4. Белок Oct4 присоединяется к определенным ключевым генам и одновременно притягивает конкретный эпигенетический фермент. Этот фермент модифицирует хроматин и меняет регуляцию гена. И Oct4, и эпигенетический фермент, с которым тот взаимодействует, жизненно важны для эмбриона на ранних стадиях его развития. Если один из них отсутствует, зигота не сможет развиться даже до того, чтобы сформировать ВКМ.

Схемы экспрессии генов на ранних этапах развития эмбриона, в конечном счете, регулируются автоматически. Когда экспрессируются определенные белки, они могут связаться с промотором Oct4 и подавить экспрессию этого гена. В обычных условиях соматические клетки не экспрессируют Oct4. Это было бы для них слишком опасно, поскольку Oct4 мог бы нарушить нормальную схему экспрессии генов в дифференцированных клетках и превратить их в некое подобие стволовых клеток.

Именно это и проделал Шинья Яманака, когда использовал Oct4 в качестве перепрограммирующего фактора. Искусственно создав очень высокие уровни содержания Oct4 в дифференцированных клетках, он сумел «обмануть» клетки и вынудить их вести себя так, как будто они находились на ранних стадиях развития. Даже эпигенетические модификации были аннулированы — вот насколько велика сила этого гена.

Нормальное развитие предоставляет нам важные доказательства необходимости эпигенетических модификаций для контроля участи клетки. Не менее наглядно демонстрируют нам значение эпигенетики и те случаи, когда развитие идет по неверному пути.

Перейти на страницу:

Все книги серии живая линия

Спящая красавица
Спящая красавица

«Спящая красавица» - третье по счету произведение довольно громкого автора Дмитрия Бортникова. Со своим первым романом «Синдром Фрица» он в 2002 году вошел в шорт-листы «Нацбеста» и «Букера», известен переводами за рубежом. Чтение крайне энергетическое и страстное, шоковое даже. Почти гениальный микст Рабле, Платонова, Лимонова и Натали Саррот - и при этом с внятным скандальным сюжетом. Роман, о котором будет написано великое множество противоречивых рецензий и который способен затронуть наиболее интимные процессы любого читателя. Лирический и страстный текст финалиста премии "Национальный бестселлер", ныне живущего во Франции. Беспощадно резкая критика современной российской провинции, невероятное напряжение чувств, лилии и экскременты. Работа Бортникова с языком без пяти минут гениальна. "Спящая красавица" - это книга, которая отпечатывается в памяти навсегда.

Дмитрий Бортников , Дмитрий Святославович Бортников

Проза / Современная русская и зарубежная проза / Современная проза
Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности
Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности

Расшифровка уникального кода ДНК Homo sapiens долгие годы было для ученых непосильной задачей. В 1990 году был запущен международный научно-исследовательский проект «Геном человека», результатом работы которого в 2003 году стало полное описание структуры генома человеческого вида. Выяснилось, что клетки воспринимают генетический код как некое общее руководство к действию, а не шаблон, позволяющий каждый раз получать один и тот же результат. Изменениями в геноме, не затрагивающими последовательность ДНК, и занимается эпигенетика — прогрессивное, динамично развивающееся направление биологии.Nessa Carey. The Epigenetics Revolution. How modern biology is rewriting our understanding of genetics, disease and inheritance

Несса Кэри

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Зачем мы говорим. История речи от неандертальцев до искусственного интеллекта
Зачем мы говорим. История речи от неандертальцев до искусственного интеллекта

Эта книга — захватывающая история нашей способности говорить. Тревор Кокс, инженер-акустик и ведущий радиопрограмм BBC, крупным планом демонстрирует базовые механизмы речи, подробно рассматривает, как голос определяет личность и выдает ее особенности. Книга переносит нас в прошлое, к истокам человеческого рода, задавая важные вопросы о том, что может угрожать нашей уникальности в будущем. В этом познавательном путешествии мы встретимся со специалистами по вокалу, звукооператорами, нейробиологами и компьютерными программистами, чей опыт и научные исследования дадут более глубокое понимание того, что мы обычно принимаем как должное.

Тревор Кокс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения