Рис. 4.3. Гистоновый октамер (по две молекулы гистонов Н2А, Н2В,H3 и Н4), туго упакованный и обернутый ДНК, образует основную единицу хроматина под названием нуклеосома.
Если бы мы попытались найти какую-нибудь информацию о гистонах всего лишь лет пятнадцать назад, то узнали бы, что это некие «упаковывающие белки» и не более того. Нет сомнений в том, что ДНК должна каким-то образом упаковываться. Диаметр ядра клетки составляет обычно около 10 микронов (это 1/100 миллиметра), а если бы ДНК в клетке оставалась в свободном состоянии, она могла бы вытянуться в длину до 2 метров. ДНК туго обернута вокруг нуклеосом, а те плотными слоями уложены друг на друга.
Определенные участки наших хромосом почти постоянно имеют ярко выраженные формы подобных структур. Преимущественно, это те участки, которые не несут в себе информацию о генах. В большинстве случаев, они представляют собой структурные участки, расположенные, например, на самых кончиках хромосом, или области, важные для разделения хромосом после копирования ДНК при делении клеток.
Участки ДНК, подвергаемые действительно активному метилированию, также имеют такие сверхплотные структуры, и метилирование играет очень важную роль в формировании этих образований. Это один из тех механизмов, которые обусловливают репрессию определенных генов на протяжении десятилетий в таких долго живущих типах клеток как нейроны.
А как насчет тех участков, которые не скручены туго, в которых находятся активированные гены или же способные к последующей активации? Здесь-то на первые роли и выдвигаются гистоны. Функции их неизмеримо расширяются, теперь они не являются только лишь молекулярными катушками, на которые могла бы наматываться ДНК. Если метилирование ДНК представить как достаточно долговечные дополнительные пометки на нашем сценарии «Ромео и Джульетты», то модификации гистонов будут служить в этой аналогии примечаниями, обреченными на скорое исчезновение. Их можно сравнить со сделанными карандашом записями, которые отобразятся при последовательном копировании несколько раз, а потом станут невидимыми. А может быть, судьба их окажется еще более мимолетной, как у самоклеющихся листочков бумаги для записей, годных лишь на один раз.
Впечатляющее число научных прорывов в этой области было сделано в лаборатории профессора Дэвида Эллиса из Рокфеллеровского университета в Нью-Йорке. Ее руководитель, всегда с иголочки одетый, аккуратный, чисто выбритый американец, выглядящий значительно моложе своих 60 лет, пользуется чрезвычайной популярностью среди коллег. Как и многие эпигенетики, он начинал карьеру в области биологии развития. Подобно Эдриану Бёрду и, еще раньше, Джону Гердону, Дэвид Эллис едва ли не равнодушно относится к своей репутации мирового светила в эпигенетике. В целом цикле выдающихся статей, опубликованных в 1996 году, он вместе с коллегами показал, что гистоновые белки претерпевают в клетках химическую модификацию, и эта модификация повышает экспрессию генов, если они находятся возле специфически измененных нуклеосом[26].
Гистоновая модификация, обнаруженная Дэвидом Эллисом, была названа ацетилированием. Ацетилирование представляет собой присоединение химической ацетил-группы, в данном случае, специфической аминокислоте, которая называется лизин, на свободном отростке одного из гистонов. На рисунке 4.4 показано строение лизина и ацетил-лизина, и мы опять видим, что изменения относительно незначительны. Как и метилирование ДНК, ацетилирование лизина представляет собой эпигенетический механизм для изменения экспрессии генов, не влияющий на исходную последовательность генов.
Рис. 4.4. Химическое строение аминокислоты лизин и ее эпигенетически модифицированной формы ацетил-лизин. С — углерод; Н — водород; N — азот; О — кислород. Для упрощения некоторые атомы углерода намеренно не отмечены, однако они присутствуют там, где изображены две соединительные линии