Читаем Эпоха дополненной реальности полностью

Изобретение увеличительного стекла приписывают Роджеру Бэкону[312] и датируют приблизительно 1250 годом, хотя отдельные упоминания об использовании с этой целью заполненного водой стеклянного шара встречаются уже у древнегреческих авторов. Согласно одной из исторических гипотез, первый составной микроскоп (с выпуклой и вогнутой линзами) появился в Нидерландах в конце 1590-х годов, в эпоху расцвета голландской колониальной империи. Первый в истории патент на телескоп выдан голландскому очковому мастеру Хансу Липперсгею[313], объявившему в 1608 году об изобретении устройства, дающего трехкратное увеличение. В его приборе использовалась вогнутая линза в окуляре и выпуклая – в объективе. По легенде, идею телескопа Липперсгей подсмотрел у детей, игравших в его лавке с линзами и случайно открывших эффект оптического приближения далекого флюгера при его рассматривании через соосно ориентированные выпуклое и вогнутое стекла. Впрочем, были и те, кто утверждал, что идея украдена у другого голландского изготовителя очков, Захария Янсена. Несколько лет спустя Галилео Галилей усовершенствовал устройство микроскопа – авторство самого термина приписывают другу Галилея Джованни Фаберу[314], папскому врачу и ботанику родом из Германии.

Фундаментальный закон дифракционного предела, открытый в 1873 году, гласит, что разрешение оптического микроскопа не может превышать длины полуволны используемого им света. Для видимого света дифракционный предел составляет около 0,2 микрона, что в 500 раз тоньше человеческого волоса. В ту пору невозможно было представить, что когда-нибудь с помощью микроскопа мы будем изучать строение бактерий и клеток, не говоря уже о структуре ДНК или отдельных белков, о существовании которых тогда и не подозревали.

Однако сегодня невероятное стало реальностью. Нобелевская премия по химии за 2014 год присуждена Эрику Бетцигу Уильяму Мёрнеру и Штефану Хеллю «за развитие флуоресцентной микроскопии высокого разрешения» – технологии, позволившей преодолеть установленный в 1873 году дифракционный предел и перейти с микро- на нанометровый масштаб наблюдения. А за год до этого, в 2013 году, Американское физическое общество (APS) опубликовало первый в истории снимок квантовых волновых функций атома водорода, зафиксировав эффект Штарка (не путать с Тони)[315],[316]. Используя квантовый микроскоп, разработанный в нидерландском Институте атомной и молекулярной физики (AMOLF), исследователи использовали фотоионизацию и электростатические увеличивающие линзы для прямого наблюдения электронных орбиталей возбужденного атома водорода. Галилей бы ими гордился.


Рисунок 6.7.Слева – структура атома водорода, сфотографированная с помощью фотонного атомно-силового микроскопа; справа – три экзопланеты, вращающиеся вокруг далекой звезды, снятые с помощью телескопа обсерватории Gemini (источники: FOMA и Gemini Planetary Imager)


Современные квантовые электронные микроскопы используют технологию «сжатого света» (позволяющую преодолеть принцип неопределенности Гейзенберга) для создания пучка, волны в котором теряют амплитуду, но синхронизируются по фазе. Исследователи рассчитывают, что благодаря новым возможностям удастся получать изображения с разрешением до одного нанометра и выше.

На другом полюсе – астрофизические исследования дальнего космоса, включая поиск и исследование экзопланет при помощи мощнейших телескопов нового поколения, таких как телескоп Kepler, GPI (Gemini Planet Image) или TESS (Transiting Exoplanet Survey Satellite), запуск которого планируется в 2017 году. Первая из экзопланет была открыта только в 1995 году, по состоянию на декабрь 2015 года за пределами Солнечной системы зарегистрировано 1900 планет, еще 4700 объектов-кандидатов в экзопланеты ожидают подтверждения[317].

Мы «дополнили» наше зрение, сумев проникнуть в структуру квантового мира и постичь тайны космоса. Следующим шагом должно стать применение дополненного зрения в повседневной жизни. На протяжении последних 50 лет концепция расширения зрительных возможностей человека при помощи индикатора лобового стекла (ИЛС)[318] находилась в центре внимания писателей-фантастов и военных инженеров. Достаточно вспомнить такие популярные фильмы, как «Континуум», «Железный человек» или «Бэтмен». Новейший реактивный истребитель F22 Raptor – из этой же серии[319].

Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература