Читаем Есть идея! полностью

Наберите пригоршню монет и, бросив ее на стол, сосчитайте, сколько монет выпало вверх гербом. Если число гербов окажется четным, мы скажем, что гербы имеют «четную четность». Если число гербов на столе окажется нечетным, мы скажем, что гербы имеют «нечетную четность». Выбрав наугад две монеты, переверните их и повторите эту операцию сколько угодно раз (выбирая пары монет каждый раз наугад). Вы обнаружите удивительную закономерность: независимо от того, сколько пар монет перевернуто, четность гербов остается неизменной. Если сначала она была нечетной, то она останется нечетной, а если была четной, то останется четной.

Сохранение четности гербов лежит в основе остроумного фокуса с монетами. Повернувшись спиной к столу, на котором разложены монеты, попросите кого-нибудь перевернуть наугад сколько угодно пар монет и, выбрав любую монету по своему усмотрению, накрыть ее рукой. Повернувшись лицом к столу и взглянув на монеты, вы можете безошибочно сказать, как лежит закрытая рукой монета — вверх или вниз гербом. Секрет фокуса очень прост. Прежде чем отвернуться от стола, вы пересчитываете монеты, лежащие вверх гербом, и запоминаете, какое число — четное или нечетное — получилось. Переворачивание любого числа пар монет не изменяет четности числа гербов. Поэтому повернувшись к столу, вы лишь пересчитываете заново монеты, лежащие вверх гербом, и узнаете, как лежит закрытая рукой монета — гербом вверх или вниз.

Фокус можно показывать и по-другому. Пусть ваш помощник закроет рукой не одну, а две монеты. Вы сможете безошибочно сказать, лежат ли они обе вверх гербом или «решкой», или же одна монета лежит гербом вверх, а другая — гербом вниз. Аналогичные проверки на четность лежат в основе многих хитроумных карточных фокусов.

Проф. Квиббл и его домашние животные

Перед вами снова проф. Квиббл.

Проф. Квиббл. У меня есть для вас новая головоломка. Сколько у меня домашних животных, если все они, кроме двух, собаки, все оии, кроме двух, кошки и все они, кроме двух, попугаи?

Ну как, решили?

У проф. Квиббла всего 3 домашних животных: собака, кошка и попугай. Все они, кроме двух, собаки, все они, кроме двух, кошки, и все они, кроме двух, попугаи.

Один за «всех» и «все» за одного

Эту задачу-головоломку, кажущуюся на первый взгляд неприступной, легко решить «в уме», если понять, что слово «все» может относиться и к одному-единственному животному. Требуемое решение мы получаем в простейшем случае, когда имеется 1 собака, 1 кошка и 1 попугай. Однако решение задачи полезно представить в алгебраическом виде.

Пусть x — число собак, y — число кошек, z — число попугаев, а n — общее число животных. Тогда условия задачи позволяют записать следующую систему из 4 уравнений:

n = x + 2

n = y + 2

n = z + 2

n = x + y + z

Решить ее можно многими стандартными способами. Из первых трех уравнений видно, что xy = z. Так как nx + 2 и n = Зx (из последнего уравнения), то x + 2 = 3x, откуда x = 1, и мы получаем полный ответ задачи: xy = z = 1.

Поскольку x, y и z в таких задачах принимают, как правило, целые положительные значения (кто станет держать у себя треть кошки или четверть попугая?), то задачу о домашних животных проф. Квиббла можно отнести к так называемым диофантовым задачам. Так принято называть задачи, сводящиеся к решению алгебраических уравнений в целых числах. Иногда диофантовы уравнения не имеют решений или допускают только одно решение. Существуют также диофантовы уравнения, имеющие более одного решения и даже бесконечно много решений. Вот, например, еще одна несколько более трудная диофантова задача о трех видах домашних животных, также сводящаяся к решению системы линейных уравнений.

Корова стоит 10 долларов, свинья — 3 доллара, а овца — 50 центов. Фермер купил по крайней мере 1 корову, 1 свинью и 1 овцу, израсходовав на покупку всего 100 долларов. Сколько и каких животных он купил?

Пусть x — число коров, y — число свиней и z — число овец. Тогда условия задачи можно записать в виде двух уравнений:

10x + 3y + z/2 = 100,

x + y + z = 100.

Умножив правую и левую часть первого уравнения на 2, избавимся от двойки в знаменателе, после чего вычтем из первого уравнения второе. Тем самым мы исключим z и получим «укороченное» уравнение

19x + 5y = 100.

Какие целочисленные значения могут принимать x и y? Один из способов получить ответ на этот вопрос состоит в том, чтобы преобразовать уравнение, оставив в левой части только член с наименьшим коэффициентом при неизвестном: 5y = 100 − 19x. Разделив обе части уравнения на 5, получим у = (100 − 19x)/5. Разделим теперь 100 и 19x на 5, выделив заведомо целую часть и дробный остаток (если он существует):

y = 20 − Зx − 4x/5.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука