Читаем Есть идея! полностью

Чтобы решить вторую задачу, необходимо воспользоваться последовательностью, которая бы сопоставляла каждому флакону отличный от других номер и обладала бы еще одним дополнительным свойством: сумма членов любой ее подпоследовательности должна быть отличной от суммы членов любой другой ее подпоследовательности. Существуют ли такие последовательности? Да, существуют. Примером может служить хотя бы геометрическая прогрессия со знаменателем 2 и первым членом 1: 1, 2, 4, 8, 16… Все члены этой последовательности — степени числа 2, причем показатель возрастает от 0 с единичным шагом. Именно эта последовательность лежит в основе двоичной системы счисления.

Решение задачи состоит в том, чтобы, выстроив флаконы в ряд, взять 1 пилюлю из первого флакона, 2 пилюли из второго флакона, 4 пилюли из третьего флакона и т. д., затем собрать все отобранные пилюли и взвесить. Предположим, что пилюли оказались на 270 мг тяжелее, чем нужно. Так как каждая пилюля с повышенной дозой лекарства тяжелее нормальной на 10 мг, то, разделив 270 на 10, мы получим 27 — число более тяжелых пилюль.

Запишем число 27 в двоичной системе: 11011. Двоичные разряды, в которых стоят единицы, говорят нам, какие степени числа 2 в сумме дают двоичное число 11011 (или десятичное число 27): 1, 2, 8 и 16. Единицы стоят в первом, втором, четвертом и пятом двоичных разрядах. Следовательно, непригодные пилюли с повышенным содержанием лекарства находятся в первом, втором, четвертом и пятом флаконах.

Двоичная система счисления находит столь широкое применение именно потому, что каждое положительное целое число можно представить в виде суммы степеней числа 2 единственным способом. Без двоичной системы счисления в наши дни немыслима работа ЭВМ. Немалую роль двоичная система играет во многих областях прикладной математики. Почетное место отведено двоичной системе и в занимательной математике.

Вот простой карточный фокус, который позволит вам удивить и позабавить ваших друзей. Хотя внешне он ничем не напоминает задачу об отыскании флаконов с непригодными пилюлями, и задача, и фокус по существу «двоичны» — в основе их лежит двоичная система счисления.

Пусть кто-нибудь из зрителей тщательно перетасует колоду карт. Положив ее в карман, попросите вашего помощника назвать любое число от 1 до 15, после чего, сунув руку в карман, достаньте карты, значения которых в сумме равны названному числу (туз считается равным 1).

Секрет фокуса прост. Вы заранее кладете в карман туз, двойку, четверку и восьмерку. Определить на глаз недостачу четырех карт в колоде невозможно, и ваши зрители будут пребывать в уверенности, что вы попросили перетасовать полную колоду. Перетасованную колоду вы подкладываете под четыре карты, уже лежащие в кармане. После того как число названо, вы мысленно представляете его в виде суммы степеней числа 2 (например, если названо число 10, то вы мысленно разлагаете его в сумму 8 + 2=10) и, сунув руку в карман, достаете двойку и восьмерку.

На том же двоичном принципе построены и карточки «для чтения мыслей на расстоянии». На рис. 1 из гл. 3 показаны 6 карт, позволяющие безошибочно отгадывать любое задуманное число от 1 до 63. Попросите кого-нибудь, задумав любое число в этом диапазоне (например, свой возраст), отобрать и вручить вам все карточки, на которых оно встречается, и вы немедленно назовете задуманное число. Секрет этого фокуса также прост: вы просто суммируете степени числа 2, стоящие в левом верхнем углу каждой таблицы. Например, если были отобраны и вручены вам таблицы C и F, то вы суммируете числа 4 и 32 и узнаете, что было задумано число 36.

По какому принципу выбраны числа на каждой карточке? Каждое число, имеющее в двоичной записи единицу в первом разряде справа, заносится в таблицу A. Следовательно, в эту таблицу вписаны все нечетные числа от 1 до 63. В карточку B заносятся все числа, имеющие в двоичной записи единицу во втором разряде справа, в карточку C — все числа, имеющие единицу в третьем разряде справа и т. д. Заметим, что число 63 в двоичной системе записывается как 111111, то есть имеет единицы во всех шести разрядах, и поэтому встречается на всех шести карточках.

Иногда фокусники придают этому фокусу налет таинственности, окрашивая карточки в различные цвета и запоминая, какой цвет соответствует той или иной степени числа 2. Пусть, например, красная карточка означает 1, оранжевая — 2, желтая — 4, зеленая — 8, голубая — 16 и фиолетовая — 32 (мы выбрали 6 цветов радуги по порядку, пропустив синий). Фокусник становится в дальнем конце комнаты и просит кого-нибудь из зрителей отложить в сторону карточки, на которых встречается задуманное число. По цвету отложенных карточек фокусник без промедления может назвать задуманное число.

Распиленный браслет

Однажды юная Глория из Арканзаса отправилась в Калифорнию. Ей необходимо было снять на неделю номер в гостинице.

Портье в гостинице встретил ее весьма нелюбезно.

Портье. Могу предложить только номер за 20 долларов в сутки. Плата наличными.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука