Читаем Есть идея! полностью

Дик. Другой точки, кроме Северного полюса, нет и быть не может, и я берусь доказать это. Предположим, что самолет вылетает из точки, расположенной между Северным полюсом и экватором.

Дик. Ясно, что в этом случае конечная точка маршрута не может совпадать с исходной. Если же самолет вылетает из точки, расположенной на экваторе, то конечная точка маршрута оказывается примерно в 100 км от исходной точки.

Дик. Если же самолет вылетает из точки, расположенной в южном полушарии, то конечная точка будет отстоять от исходной более чем на 100 км.

Дэн. Может, ты хочешь поспорить на 2 доллара, что самолет не мог вылететь ниоткуда, кроме Северного полюса?

Дик принял пари и проиграл. Почему?

Предположим, что самолет стартовал из точки, расположенной на параллели А, отстоящей на расстояние 116 км от Южного полюса, и пролетел к югу 100 км.

Пролетев 100 км на восток, он совершит полный оборот вокруг Южного полюса. Пролетев затем 100 км на север, он непременно вернется в исходную точку.

Дик. Ты прав, вот твои 2 доллара.

Дэн. Ставлю еще доллар, что, по-твоему, я не смогу указать других мест на земном шаре, вылетев откуда и пролетев сначала 100 км на юг, затем 100 км на восток и 100 км на север, самолет сможет вернуться в исходную точку. Под «другими местами» я понимаю точки, не лежащие на параллели А и не совпадающие с Северным полюсом.

Дик. Тогда ставлю 50 долларов, что таких точек на земном шаре нет.

Бедный Дик снова проиграл. Какую важную идею он упустил из виду?

Откуда вылетать?

Заключая второе пари, Дик упустил из виду весьма важное обстоятельство: точка, откуда вылетает самолет, может быть выбрана так близко от Южного полюса, что, пролетев 100 км на восток, он опишет вокруг полюса не один оборот, как в предыдущем решении, а два полных оборота. Так возникает новая параллель, все точки которой служат решениями исходной задачи. Аналогичным образом самолет может вылететь из любой точки еще меньшей окружности и, держа курс на восток, совершить три, четыре и т. д. оборота вокруг полюса. При любом целом положительном n можно указать соответствующую параллель, вылетев из любой точки которой и держа курс на восток, самолет совершит n оборотов вокруг полюса. Следовательно, точки, из которых может вылететь самолет, заполняют бесконечно много параллелей, стягивающихся к полюсу,

А вот еще одна навигационная задача, связанная с замечательной кривой на сфере — локсодромой, или линией постоянного курса. Самолет вылетает из точки, расположенной на экваторе, и берет курс на северо-восток. Где закончится его полет, если запасы горючего можно считать неограниченными? Какова длина маршрута и как он выглядит?

Возможно, вы удивитесь, когда узнаете, что маршрут полета имеет вид спирали, пересекающей все меридианы под одним и тем же углом и заканчивающейся на Северном полюсе. Такую кривую правильнее было бы рассматривать как винтовую линию, навитую на сферу, стягивающуюся к Северному полюсу и успевающую описать вокруг полюса бесконечно много витков. Если самолет условно принять за точку, то маршрут, хотя и успевает совершить бесконечно много оборотов вокруг полюса, имеет конечную длину, которая поддается вычислению. Следовательно, поддерживая в полете постоянную скорость, самолет достигнет Северный полюс за конечное время.

При нанесении на плоскую карту форма локсодромы искажается в зависимости от выбора картографической проекции. На меркаторской проекции, известной по карте мира, локсодрома переходит в прямую. Именно поэтому меркаторская проекция находит столь широкое применение в решении навигационных задач. Если судно или самолет следуют постоянным курсом, то, чтобы проложить его на карте, достаточно провести прямую.

А что произойдет, если самолет, взлетев с Северного полюса, возьмет курс на юго-запад? Эта задача обратна предыдущей. Полет, как и прежде, будет происходить по локсодроме, но сказать, где приземлится самолет в конце пути, мы не можем. В этом можно легко убедиться, обратив время: из какой бы точки, расположенной на экваторе, ни вылетел самолет, он, двигаясь вспять, неизменно окажется на Северном полюсе. Если же самолет, достигнув экватора, пересечет его и будет лететь тем же курсом, то локсодрома стянется к Южному полюсу.

При проецировании на плоскость, касательную к полюсу (и параллельную плоскости экватора), локсодрома переходит в равноугольную, или логарифмическую, спираль. Эта спираль пересекает радиус-вектор под постоянным углом.

Задача о четырех жуках, входит в сокровищницу занимательной математики. Она также связана с построением маршрутов и логарифмической спиралью, но допускает неожиданно простое решение, избавляющее от необходимости производить утомительные выкладки. Вы познакомитесь с ней, прочитав небольшой рассказ о семействе Пицца и их любимцах — четырех черепашках.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука