В течение долгого времени постулировалась специфичность регуляторных сигналов и рецепторов, воспринимающих эти сигналы. В отношении химических сигналов идея специфичности достигла наибольшего развития. Действительно, эти сигналы, действующие через кровь, должны находить свои клетки-мишени и оказывать на них определенный эффект. В то же время число сигнальных молекул по сравнению с тем количеством, которое следовало бы ожидать, исходя из специфичности химических сигналов, невелико. Рецепторы для каждого типа сигнальных молекул локализованы практически в клетках всех типов. Кроме того, на примере кишечной гормональной системы продемонстрировано, что клетки, продуцирующие казавшийся ранее уникальным гормон, могут быть дублированы или даже мультиплицированы.
Попытаемся показать, что многообразные высокоразвитые формы управления в сложных организмах достигаются благодаря комбинации стандартных функциональных блоков, образующих специализированные и приспособленные для определенных задач цепи.
Химические сигналы.
Первоначально предполагалось, что каждый эффект и каждый источник физиологически активного вещества связан с особым гормоном. При действии на мишень нескольких гормонов принималось, что лишь один из них оказывает физиологическое действие, а другие — фармакологическое. Однако множественный контроль клеток различных типов пищеварительной системы известен. Например, обмен воды между тканями тонкой кишки и ее полостью контролируется многими гормонами (гастрин, секретин, холецистокинин, ВИП, ГИП, вазопрессин, субстанция Р, бомбезин, серотонин и др.), продуцируемыми эндокринными клетками как желудочно-кишечного тракта, так и другими эндокринными органами, а также простагландинами. Чувствительность к различным гормонам и другим физиологически активным веществам означает наличие рецепторов многих типов или сложных рецепторов, способных связывать не один, а два или более видов лигандов. (Под рецепторами понимается большая группа структур, обладающих высоким сродством и способностью связываться с определенными типами лигандов). Можно ли считать, что рецепторные блоки различных органов идентичны или они специфичны для каждого соответствующего органа? Мембранные рецепторы являются гликопротеинами, и варьирование их свойств может зависеть от уровня посттрансляционного гликозилирования. В то же время существуют данные в пользу сходства или идентичности одноименных рецепторов в различных органах. В частности, это показано для таких ранее казавшихся локальными факторов, как субстанция Р, холецистокинин, ВИП, гастрин и др.Внутриклеточные сигналы.
На уровне сигнальных рецепторных блоков концепция их универсальности и специализации на основе рекомбинации находит новое подтверждение. Например, секреторные процессы в ацинарных клетках поджелудочной железы контролируются системой нервных и гормональных сигналов. В частности, выброс секреторных гранул происходит под влиянием холецистокинина и ацетилхолина. Холецистокинин длительное время рассматривался как специфический стимулятор секреции ферментов. Однако позднее было обнаружено, что этот механизм не специфичен, а включен в систему вторичных мессенжеров — цАМФ и Са 2+. Так, холецистокинин контролирует многие цАМФ- и Са 2+-зависимые процессы, в том числе внутренней секреции, стимулируя выделение ряда гормонов, и действует аналогично медиатору. Многие гормоны выполняют также функции нейротрансмиттеров. Эту роль могут играть гастрин и холе-цистокинин; серотонинподобные вещества, вызывающие возбуждение в межнейронных синапсах; АТФ — скорее всего в тормозящих нейронах; субстанция Р, выполняющая функции возбуждающего, а энкефалин и соматостатин — тормозящего нейротрансмиттеров. Предполагается также нейротрансмиттерная функция ВИПа (рис. 29).Рис. 29. Схема способа передачи пептидов, действующих в качестве паракринных мессенжеров (
Те же самые молекулы могли бы функционировать в каждой из систем одного и того же организма.
Принцип работы рецепторных блоков можно проиллюстрировать на примере рецепторно-аденилатциклазного комплекса. Такой комплекс осуществляет передачу сигналов путем их ретрансляции с помощью аденилатциклазы. Сущность процесса сводится к образованию комплекса рецептор—гормон, что приводит к стимуляции активности аденилатциклазы, локализованной на внутренней стороне мембраны. Активация аденилатциклазы первичным мессенжером связана с его взаимодействием с рецептором, каталитической и, возможно, промежуточной субъединицами фермента. При стимуляции активности фермента происходит увеличение образования цАМФ, что вызывает цепную реакцию с отрицательной обратной связью, приводящую к ее выключению. Ниже приведен список гормонов, стимулирующих или подавляющих активность аденилатциклазы (табл. 11).
Таблица 11