Из всех философских вопросов, поднятых современной физической теорией, наиболее острыми и существенными были вопросы квантовой механики. В философии естествознания учеными двух предшествующих поколений были выдвинуты несколько проблем — таких, например, как интерпретация специальной теории относительности, — которые привлекали внимание ученых на протяжении нескольких десятилетий или более, но сейчас уже утратили большую часть своей привлекательности; другие вопросы — такие, как обсуждение теории информации и искусственного интеллекта, — лишь недавно приобрели свое значение. Однако в случае с высокоматематизированным аппаратом квантовой механики спор продолжается уже более 50 лет, прошедших после первых публикаций[784]
. В этом споре участвуют ученые многих стран, в том числе и из СССР.Структура квантовой механики может быть разделена на математический формализм и его физическую интерпретацию. Математический формализм, составляющий основу квантовой механики, есть дифференциальное волновое уравнение, решение которого определяет пси (Ψ) функцию; это волновое уравнение было впервые выведено Эрвином Шредингером, который пытался применить сделанное Луи де Бройлем расширение корпускулярно-волнового дуализма не только к свету, но и к элементарным частицам материи. Достоинством этого формализма является то, что он предлагает, на вероятностной основе, числовые величины, делающие возможным более сложное математическое описание микрофизических состояний, включая предсказание будущих состояний, что было невозможным в любом другом формализме. Недостатком математического аппарата квантовой механики является то, что единственная широко принятая (а по мнению некоторых, единственно возможная) его физическая интерпретация противоречит нескольким из наиболее основных человеческих интуитивных представлений о материи. В особенности квантово-механические вычисления, в отличие от классических законов макроскопической области, не дают величин для пространственного положения и импульса микрочастиц с произвольной точностью. Согласно хорошо известному соотношению неопределенности, чем точнее известно положение микрочастицы, тем менее точно известен ее импульс, и наоборот[785]
.Ввиду успеха математического аппарата квантовой механики для выведения полезных физических величин возникал естественный вопрос: каково физическое значение волновой функции? Может ли материя действительно иметь волновую природу? Как раз вопросу физической интерпретации математического аппарата квантовой механики были посвящены работы многих философов и естествоиспытателей[786]
.Эволюция квантово-механических теорий — это путь, загроможденный неудовлетворительными объяснениями. Де Бройль изначально предположил, что материя волнообразна и что волны, описываемые квантовой механикой, не «представляют» систему, а сами
Копенгагенская интерпретация, разработанная Нильсом Бором и Вернером Гейзенбергом, устранила противоречия предыдущих интерпретаций утверждением того, что никакое наблюдаемое не имеет величины до тех пор, пока не произведено измерение этого наблюдаемого. Как заявил Гейзенберг, «„траектория“ возникает только вследствие того, что мы ее наблюдаем»[789]
. Таким образом, бессмысленно говорить о характеристиках материи в любой особый момент, не обладая эмпирическими данными, относящимися к этому моменту. Бессмысленно говорить о положении частицы («положение» является свойством корпускулярной теории) без измерения положения; также необоснованно было бы говорить об импульсе (волновое свойство) без его измерения. Такое примирение классически несовместимых характеристик путем утверждения их существования лишь в момент измерения обычно называется «дополнительностью» и является центром наиболее критических обсуждений квантовой механики.