С упоминанием «чисто статистического» подхода Никольского было бы уместным сделать здесь несколько замечаний по поводу понятия вероятности, которое является решающим для любой интерпретации квантовой механики. Вероятность в квантовой механике интерпретировалась различными учеными как в эпистемологическом, так и в статистическом смыслах. Статистический, или частотный, подход, использованный Никольским, был попыткой объективной интерпретации, в которой вероятность рассматривалась как присущая природе черта. С другой стороны, некоторые ученые рассматривали вероятность в квантовой механике, особенно через призму изначально данного Борном определения, как следствие имеющихся эпистемологических допущений. Эти ученые обсуждали даже такие необычные построения, как «волны знания». Различение этих двух подходов, которое часто терялось в дискуссиях по квантовой механике, является абсолютно необходимым для принятия решения: будет ли несводимо вероятностная теория также и обязательно идеалистической.
Интерпретация физического значения волновой функции, данная Фоком в 1936 г., практически совпадала с интерпретацией копенгагенской школы, совмещавшей особое внимание Бора к математическому описанию человеческого знания о микромире с его собственным выделением роли измерения; во введении к русскому переводу спора 1935 г., в котором против Бора выступали Эйнштейн, Подольский и Розен, Фок писал: «В квантовой механике понятие о состоянии сливается с понятием „сведения о состоянии, получаемые в результате определенного максимально точного опыта“. В ней волновая функция описывает не состояние в обыкновенном смысле, а, скорее, эти „сведения о состоянии“»[797]
.Значение этих довоенных взглядов Фока заключается в их тонком отличии от взглядов, выражавшихся им после войны, когда он попал под сильное давление, которое преследовало цель заставить его отказаться от представлений копенгагенской школы[798]
. Тем не менее смена во взглядах Фока была малой, в сравнении с зигзагами, имевшими место во взглядах других советских философов и естествоиспытателей.Дебаты 30-х годов не оставили, однако, долговременного отпечатка на отношении к квантовой механике в Советском Союзе. Многие философы даже восприняли большую часть копенгагенской интерпретации. В начале 1947 г. украинский философ М.Э. Омельяновский (который составил вместе с Фоком и Блохинцевым триумвират, представления которого будут детально разобраны далее) обосновывал позицию по квантовой механике, которая была настолько близка к копенгагенскому направлению, что это вызвало значительные осложнения для автора уже через несколько месяцев после публикации. Его книга 1947 г. стала представлять больший интерес позднее, поскольку в ней содержались взгляды, к которым Омельяновский в дальнейшем снова вернулся и последовательно их разработал[799]
.В этой работе, «В.И. Ленин и физика XX века», Омельяновский принял большую часть общепринятой интерпретации квантовой механики. Он признал и использовал такие термины, как «принцип неопределенности» и «принцип дополнительности Бора». (Годом позже этот термин у Омельяновского превратился в «так называемый принцип дополнительности».) Он выступал против такого использования этих понятий, которое могло бы привести к отрицанию физической реальности, что, по его словам, было сделано некоторыми исследователями (включая Бора), но главным тезисом книги была защита необычных, но необходимых понятий современной физики от приверженцев лапласовского детерминизма, явно устаревшего к тому времени[800]
. Однако, хотя бы в ретроспективе, среди аргументов Омельяновского можно было заметить основу его собственной интерпретации квантовой механики и его последующего критического отношения к копенгагенской школе. Хотя он соглашался с копенгагенской терминологией, он подчеркивал, что корректная интерпретация квантовой механики начинается с распознавания особенных свойств микрочастиц, а не с проблем познания. «Итак, мы приходим к заключению, что принцип неопределенности Гейзенберга, как и принцип дополнительности Бора, есть некоторое обобщенное выражение фактов двойственной (корпускулярной и волновой) природы микроскопических тел»[801]. Таким образом, принцип неопределенности не был в действительности эпистемологическим ограничением или ограничением знания, а прямым результатом объединенной волнообразной и корпускулообразной природы микрообъекта, что было