Тьюринг и фон Нейман осознавали ограниченность собственных моделей; в последние годы своей жизни они оба исследовали процессы вычислений в пространственных структурах: для Тьюринга это было формирование диаграмм направленности, а для фон Неймана – саморепликация. Однако их наследие продолжает жить в счетчике команд, имеющемся почти в любом процессоре – современном наследнике головки Тьюринга, читавшей знаки на бумажной ленте.
В природе в каждый момент времени и повсеместно что-то происходит. Целая компьютерная индустрия создала вычислительные устройства, лишь немногие исследовали физику вычислений. Эти ученые, работавшие за пределами того, что традиционно считается компьютерной наукой, смогли разработать квантовые компьютеры, использующие запутанные квантовые состояния и их суперпозицию; микрогидродинамику, в равной мере приложимую к переносу материи и переносу информации; аналоговую логику для решения дискретных задач с непрерывными степенями свободы и численную симуляцию программируемых материалов. Еще более важно то, что возникают модели программирования, создатели которых обращают больше внимания на физические ресурсы, а не стремятся переложить заботу о них на чужие плечи. Выясняется, что сделать это проще, чем предполагалось, потому что при этом удается избежать всех проблем преобразования из нефизического в физический мир.
Нео, главный герой фильма «Матрица», стоит перед выбором – он может принять красную таблетку и покинуть иллюзорный мир, в котором живет, или принять синюю и сохранить существующую иллюзию. Оказавшись в реальном мире, он понимает, что этот мир намного более сложен, но при этом он гораздо интереснее. Перед таким же выбором стоит в наши дни и цифровой мир – он может либо принять, либо отвергнуть физическую реальность, в которой находится.
Архитектуру машин Тьюринга и фон Неймана можно представить себе в виде технологических колес-стабилизаторов (напоминающих колесики на детском велосипеде). Они облегчают наше движение, однако теперь нам необходимо сделать нечто большее – мы должны добавить к своим программам физические единицы измерения, и это даст нам возможность написать программу для универсального компьютера – нашей Вселенной.
Наука развивается благодаря похоронам
Сэмюел Барондес
Когда Макс Планк начал изучать физику в Мюнхенском университете в 1874 году, его учитель, Филипп фон Жолли, предупредил его о том, что физика – это уже зрелая область, в которой вряд ли можно научиться чему-то новому. Такой подход продержался вплоть до конца XIX века.
В 1900 году лорд Кельвин, великий британский физик, ясно заявил:
В физике не осталось ничего нового и требующего открытия. Все, чем нам остается заниматься, это более точными измерениями.
Но уже в ранние годы карьеры Планка у него были причины сомневаться в этом самодовольном утверждении. И в том же году, когда Кельвин сказал свои слова, Планку удалось их опровергнуть.
Он работал над изучением связи тепла и света (вопросом, вызывавшим большой интерес у активно развивавшихся электрических компаний) и предложил уравнение, вполне соответствующее теориям классической физики. Однако он изрядно встревожился, получив новые результаты экспериментов, которые доказывали его неправоту.
Припертый к стене 42-летний Планк быстро вывел другое уравнение, которое соответствовало данным. Однако и новое уравнение привело к неожиданным последствиям. Будучи несовместимым с прежними физическими идеями, оно оказалось первым кирпичиком совершенно нового взгляда на физику – квантовой теории. То, как сопротивлялись этому нововведению консервативные представители физического сообщества, может наглядно подтверждать мнение Планка о том, что новая научная истина не одержит триумфальной победы, пока «ее оппоненты не вымрут с течением времени».
Однако в реальности триумф квантовой теории не зависит от этой мрачной перспективы. Участники физического истеблишмента вскоре начали относиться к квантовой теории серьезно, поскольку это была не просто странная идея, пришедшая в голову Планка. Ее необходимость проявилась вследствие довольно удивительного результата эксперимента.