Даже если вещества по своей способности связываться с носителем различаются очень незначительно, увеличивая длину колонки и варьируя растворители (элюенты), можно добиться исключительно высокого разрешения-. Внедрение хроматографических методов в химическую практику создало совершенно новую ситуацию. Раньше синтез считался неудачным;, когда в результате эксперимента получалось' несколько веществ, скажем, более трех-четырех, так что выход каждого из них не превышал 20-30% и возникали иногда непреодолимые трудности при разделении и идентификации продуктов: теперь и десяток компонентов в смеси — не беда. Все они могут быть разделены, очищены и идентифицированы. Более того, разделяя смесь, мы узнаем относительный выход различных продуктов, что чисто позволяет судить о механизме химических превращений, природе отдельных стадий и промежуточных продуктов.
Охарактеризовать вещество
Мы получили чистое вещество. Пусть это красивые красные кристаллы или прозрачная бесцветная жидкость. Но ведь известны тысячи веществ, образующих красные кристаллы, и еще больше бесцветных жидкостей. Как доказать, что мы получили то же вещество, что и описано в методике, по которой мы его получаем?
Существует несколько способов, которые позволяют охарактеризовать вещество. У любого твердого, кристаллического вещества есть одно свойства, которое отличает его от всех других твердых веществ температура плавления. Например,
Но ведь температуры плавления двух (или даже нескольких) веществ могут оказаться почти одинаковыми. К примеру, температуры плавления бензил 2-нафтилкетона, 2-бензилгидроксинафталина,
Представим, что мы имеем неизвестное вещество, но подозреваем, что это за соединение, или же выделили из реакционной смеси продукт и хотим убедиться, что это именно тот продукт, который мы и хотели получить. В таком случае помещаем в маленькие капилляры порошки трех веществ: полученного нами, заведомо известного вещества и их смесь. Теперь, нагревая одновременно все три капилляра, определяем температуру плавления наших образцов. Возможны такие варианты: все три образца плавятся при разных температурах (значит, мы имеем два разных вещества с разными температурами плавления), образцы чистых соединений плавятся при одной температуре, а смесь — при более низкой (следовательно, имеем два разных вещества, температуры плавления которых случайно совпали), и, наконец, все три образца расплавились одновременно (мы имеем одно и то же соединение).
Жидкости идентифицируют по температурам кипения, показателю преломления, плотности, а также по численным величинам, показывающим, как быстро движется вещество по хроматографической колонке (с данным носителем и данным растворителем).
Но все эти методы используют для идентификации вещества, уже описанного в научной литературе,- или же для того, чтобы охарактеризовать впервые полученное вещество, дать его "словесный портрет". С их помощью нельзя установить формулу нового соединения, "увидеть" его структуру. Тут нужны иные методы; о некоторых из них, без которых, пожалуй, сегодня не обойдется ни одна химическая лаборатория, мы расскажем в следующей главе.
Впрочем, эти методы, заимствованные химиками из физических наук, могут применяться не только для установления структуры молекулы. Посмотрите на рисунки на стр. 146 и 147, Разве нельзя использовать спектры поглощения различных соединений в качестве их "отпечатков пальцев", по которым можно "узнать" вещество?
Глава 12. О том, как физики помогают химикам
Вспомним правило Марковникова: при реакции гало-геноводородов с олефинами водород присоединяется к углероду, несущему наибольшее число водородных атомов. Казалось бы, все ясно. Но задумаемся: как именно установил Марковников свое правило? Как он пришел к заключению, что водород присоединяется именно к этому, а не к другому атому?
Присоединение хлористого водорода к пропилену, например, может идти "по Марковникову" с образованием 2-хлорпропана или "против Марковникова", когда получают 1-хлорпропан. Но как различить эти два вещества? Ведь мы не можем увидеть молекулу, а оба эти соединения — похожие по свойствам низкокипящие жидкости.
Конечно, сегодня мы знаем многое, чего не могли знать Бутлеров и Марковников. Но так ли было легко работать химикам в прежние времена?
Трудный хлеб химиков прошлого
Попробуем рассказать, как работали химики, чьи имена сегодня известны каждому школьнику и чьи портреты украшают кабинеты химии.