Многие математические идеи, о которых мы говорили, берут начало в реальном мире: числа, дифференциальные уравнения, задача коммивояжера, теория графов, преобразование Фурье, модель Изинга. Математика черпает вдохновение в природе, и это ей идет только на пользу.
Другие области интересующего нас предмета возникли в значительной степени благодаря чувству прекрасного, свойственному математикам-теоретикам. Комплексные числа были придуманы потому, что некрасиво, когда одни числа имеют два квадратных корня, а другие – ни одного. Модулярная арифметика, эллиптические кривые и другие части теории чисел появились, потому что людям нравятся красивые числовые закономерности, а преобразование Радона – потому что это интересный вопрос геометрии. Топология на протяжении столетия имела мало общего с реальностью, но стала одним из столпов математического здания, потому что речь в ней идет о непрерывности, а непрерывность фундаментальна.
Стремление все обобщать заметно в математике всюду. Эйлер не просто решил головоломку о мостах Кёнигсберга – он решил все без исключения головоломки этого типа и создал новую область математики, теорию графов. Шифры на основе модулярной арифметики привели к вопросам о вычислительной сложности и о том, действительно ли P ≠ NP. Комплексные числа вдохновили Гамильтона на создание кватернионов. Анализ был обобщен до функционального анализа, где пространствам конечной размерности на смену пришли функциональные пространства бесконечной размерности, а на смену функциям – функционалы и операторы. Математики придумали гильбертовы пространства квантовой теории задолго до того, как физики нашли для них применение. Топология началась с игрушек вроде ленты Мёбиуса, а затем во взрывном темпе переросла в одну из самых глубоких и абстрактных областей человеческой мысли. Теперь она начинает находить себе применение и в повседневной жизни.
Многие рассмотренные нами методы переносимы и используются в других местах независимо от того, где они в свое время появились. Теория графов применяется в медицинских задачах о пересадке почек, в задаче коммивояжера, в квантовых шифрах (расширяющие графы), в спутниковых навигаторах. Преобразование Фурье изначально было придумано для изучения тепловых потоков, но среди его родичей можно найти и преобразование Радона, используемое в медицинских сканерах, и дискретное родственное преобразование, необходимое для сжатия изображений в формате JPEG, и вейвлеты, которые ФБР использует для эффективного хранения отпечатков пальцев.
Тема единства математики тоже проходит красной нитью через все мои истории. Теория графов переходит в топологию. Комплексные числа появляются в задачах по теории чисел. Модулярная арифметика вдохновляет на построение групп гомологий. Спутниковая навигация соединяет в одной области применения по крайней мере пять частей математики, от псевдослучайных чисел до теории относительности. Динамика помогает вывести спутники на орбиту и предлагает новый метод контроля качества пружинной проволоки.
Разнообразие? В главах этой книги, если взять их вместе, фигурируют десятки областей математики, как правило, в сочетаниях. Их спектр простирается от числовых областей до геометрических, от иррациональных чисел до бутылок Клейна, от принципов справедливого дележа тортика до климатических моделей. Вероятности (цепи Маркова), графы и исследование операций (методы Монте-Карло) объединяются ради повышения шансов пациентов на получение почки для пересадки.
Что касается полезности, то спектр применений еще более разнообразен и охватывает сферы от компьютерной анимации до медицины, от производства пружин до фотографии, от интернет-торговли до прокладки авиамаршрутов, от мобильных телефонов до датчиков безопасности. Математика всюду. А я показал вам лишь крохотную часть того, что незаметно и без лишних слов управляет миром. Я понятия не имею о большей ее части. И вообще, многие лучшие идеи являются коммерческими секретами.