Распознавать уязвимости – это, конечно, замечательно, но главный вопрос в том, что следует делать для защиты. Решение этой задачи требует совершенно новых криптографических методов. Общая идея их та же, что всегда: метод шифрования должен основываться на трудных математических задачах с возможностью какого-нибудь простого обхода. Но теперь «трудный» означает «трудный для квантового компьютера». В настоящий момент обнаружено четыре основных класса задач такого рода:
• Случайные линейные шифры с коррекцией ошибок.
• Решение систем нелинейных уравнений над большими конечными полями.
• Нахождение коротких векторов в многомерных решетках.
• Нахождение маршрутов между случайными вершинами псевдослучайного графа.
Рассмотрим кратко четвертый из этих вариантов, где задействованы новейшие идеи и очень продвинутая математика.
Для практических целей возьмем граф, который имеет около 1075
вершин и соответственно большое число ребер. Шифр зависит от нахождения пути через этот граф между двумя конкретными вершинами. Это одна из разновидностей задачи коммивояжера, имеющая сопоставимую с ней трудность. Чтобы создать в решении этой задачи обходной путь, граф должен иметь скрытую структуру, которая делает решение простым. Центральная идея состоит в использовании так называемых суперсингулярных изогенных графов, или SIG. Они образуются с использованием эллиптических кривых, которые называют суперсингулярными. Вершины такого графа соответствуютИзогения между двумя эллиптическими кривыми – это полиномиальное отображение одной из них на другую, сохраняющее структуру группы Морделла – Вейля. Мы используем изогении для определения ребер графа. Для этого следует взять второе простое число
Граф-экспандер может быть использован для создания функции хеширования – булевой функции, формирующей из
Для того чтобы этот метод надежно работал, необходимо выполнить два условия. Одно из них – это условие потайного входа, известное как стойкость к восстановлению прообраза: с вычислительной точки зрения невозможно обратить хеш-функцию и найти
Если у нас имеется два простых числа
Все это выглядит очень заумно. Вряд ли вы разобрались во всех деталях, тем более что большую их часть я опустил. Но, я надеюсь, вы поняли главное: чтобы успешно защитить личную, коммерческую и военную связь от любителей подслушивать, вооруженных гипотетическими сегодня, но вполне реальными в скором времени квантовыми компьютерами, нам потребуется не что иное, как очень продвинутая и абстрактная математика, имеющая отношение к алгебраической геометрии над конечными полями.
Теория чисел, столь любимая Харди, оказалась куда более полезной, чем он мог вообразить. Но некоторые из сегодняшних ее применений наверняка разочаровали бы его. Думается, нам следовало бы извиниться перед ним за это.
6
Числовая плоскость