Следующий шаг – отрицательные числа – несколько сложнее, поскольку мы не можем наглядно продемонстрировать минус четыре апельсина. С деньгами проще, там отрицательное число можно интерпретировать как долг. Все это понимали в Китае около 200 года, о чем свидетельствует первый известный нам письменный источник «Математика в девяти книгах», хотя сама идея, несомненно, намного старше. Когда числа ассоциируют с измерениями, интерпретации отрицательных величин возникают совершенно естественно. Например, отрицательную температуру можно интерпретировать как температуру ниже нуля, тогда как положительная температура выше нуля. В некоторых случаях положительные измерения лежат справа от некоторой точки, тогда как отрицательные – слева, и т. д. Отрицательное противоположно положительному.
В наши дни математики уделяют много внимания различиям между этими типами числовых систем, но для обычного пользователя все они являются вариантами одной темы: это
Дроби позволяют делить разные вещи на сколь угодно мелкие части. Мы можем разделить метр на миллиметры, составляющие одну тысячную долю его длины, или на микрометры, составляющие одну миллионную, или на нанометры (это уже одна миллиардная) и т. д. Названия у нас закончатся намного раньше, чем нули. Практические измерения никогда не обходятся без небольших ошибок, поэтому дробей нам вполне достаточно для всех целей. Мало того, мы можем обойтись только дробями со знаменателем, равным степени десяти, – посмотрите на любой электронный калькулятор. Но для важных теоретических целей, а также для сохранения порядка в математике дробей, как оказалось, не хватает.
Последователи древнегреческого культа пифагорейцев верили, что Вселенная управляется числами (кстати, подобные взгляды до сих пор преобладают в самой передовой физике, хотя и не в столь буквальном виде). Пифагорейцы признавали только натуральные числа и положительные дроби, поэтому их система взглядов была потрясена до основания, когда один из них обнаружил, что длина диагонали квадрата не равна точной доле длины его стороны. Это открытие привело к появлению так называемых иррациональных чисел, в данном случае к квадратному корню из двух. В результате сложной исторической эволюции, начавшейся в Китае в IV веке до н. э. и продолжавшейся до Симона Стевина в 1585 году, такие числа стали представлять в виде десятичных дробей:
√2= 1,414213562373095048…
Поскольку это число иррациональное, оно должно продолжаться
Несмотря на необходимость прибегать к бесконечному процессу, бесконечные десятичные дроби обладают очень приятными математическими свойствами, в частности позволяют