Первый намек на этот прорыв можно увидеть в «Алгебре» Джона Уоллиса 1685 года. Автор распространил общепринятое представление действительных чисел в виде прямой на комплексные числа. Предположим, что некое число равно a + bi
. «Действительная часть» a – это просто действительное число, так что мы можем расположить его на обычной действительной прямой, которую можно представить как фиксированную прямую на плоскости. Второй компонент bi – это мнимое число, поэтому у него нет соответствующей ему точки на числовой прямой. Однако коэффициент b – действительное число, так что мы можем провести отрезок длиной b на той же плоскости, под прямым углом к действительной прямой. Точка на этой плоскости, полученная таким образом, представляет число a + bi. Сегодня мы сразу же видим, что это число представлено на плоскости точкой с координатами (a, b), но в то время предложение Уоллиса не встретило понимания. Исторически честь изобретения комплексной плоскости чаще всего достается Жан-Роберу Аргану, который опубликовал свое предложение в 1806 году, но на самом деле малоизвестный датский топограф Каспар Вессель чуть-чуть опередил его, опубликовав аналогичную идею в 1797 году. Однако статья Весселя была написана по-датски и оставалась никем не замеченной, пока столетие спустя не был сделан ее перевод на французский. Оба автора привели в своих статьях геометрические построения в евклидовом стиле, показывающие, как следует складывать и перемножать любые два комплексных числа.Наконец в 1837 году ирландский математик Уильям Роуэн Гамильтон прямо указал, что можно представить любое комплексное число в виде пары действительных чисел – координат точки на плоскости:
комплексное число = (первое действительное число, второе действительное число).
Затем он записал геометрические построения в виде двух формул для сложения и перемножения таких пар. Я покажу их здесь, потому что они довольно просты и элегантны:
(a, b
) + (c, d) = (a + c, b + d);(a, b
) ∙ (c, d) = (ac – bd, ad + bc).Это может показаться немного непонятным, но работает прекрасно. Числа вида (a
, 0) ведут себя в точности как действительные числа, а загадочное i соответствует паре (0, 1) – именно Уоллис предложил располагать мнимые числа под прямым углом к действительным и записывать как координаты. Формулы Гамильтона гласят:i
2 = (0, 1) ∙ (0, 1) = (–1, 0),что мы уже распознали как действительное число –1. Дело сделано. Естественно, после этого выяснилось, что Гаусс упоминал эту идею в письме к Вольфгангу Бойяи в 1831 году, но не опубликовал ее.
Если Гаусс, похоже, не понимал до конца, то Гамильтон точно видел возможность доказать с помощью этих двух формул, что комплексные числа подчиняются обычным законам алгебры, таким как перестановочный xy = yx
и сочетательный (xy)z = x(yz) законы, которые большинство из нас воспринимает как само собой разумеющиеся при первом знакомстве с алгеброй. Чтобы доказать их справедливость также и для комплексных чисел, замените символы парами действительных чисел, примените формулы Гамильтона и убедитесь, что обе стороны дают одну и ту же пару. Проще простого. По иронии судьбы к тому моменту, когда Гаусс и Гамильтон разобрались во внутренней логике при помощи пар обычных «действительных» чисел, математики успели уже столько сделать с применением комплексных чисел, что практически потеряли интерес к приданию этим числам конкретного логического смысла.Главными областями их применения были такие сферы физики, как магнитное и электрическое поля, гравитация и гидродинамика. Примечательно, что некоторые базовые уравнения комплексного анализа (дифференциальное и интегральное исчисление с комплексными функциями) точно соответствовали стандартным уравнениям математической физики. Поэтому теперь можно было решать уравнения физики при помощи дифференциального исчисления с комплексными числами. Главным ограничением было то, что комплексные числа лежат на плоскости. Поэтому физические процессы нужно было рассматривать как происходящие на плоскости или эквивалентные какой-то задаче на плоскости.
* * *
Комплексные числа придают плоскости систематическую алгебраическую структуру, которая превосходно приспособлена к геометрии, а следовательно, и к работе с движением. Оставшуюся часть этой главы можно рассматривать как двумерный предварительный разбор тех вопросов трехмерной геометрии, которым посвящена следующая глава. Там будет несколько формул – это алгебра, в конце концов, – но я не знаю, как этого избежать, ведь без них все выглядит как-то расплывчато.