Не следует забывать, что гильбертово пространство квантовой механики – это комплексное гильбертово пространство… Для неподготовленного ума понятие комплексного числа далеко не естественно, не просто и никак не следует из физических наблюдений. Тем не менее использование комплексных чисел в квантовой механике не является вычислительным трюком прикладной математики, а становится почти необходимым при формулировке законов.
Кроме того, он постарался особо подчеркнуть, что подразумевается под «непостижимым»:
Ничто в имеющемся у нас опыте не наводит на мысль о введении этих величин. Если же мы спросим у математика о причинах его интереса к комплексным числам, то он с негодованием укажет на многочисленные изящные теоремы в теории уравнений, степенных рядов и аналитических функций в целом, обязанных своим появлением на свет введению комплексных чисел… Невольно создается впечатление, что чудо, с которым мы сталкиваемся здесь, не менее удивительно, чем… два других чуда – существование законов природы и человеческого разума, способного постичь их.
Квантовая механика возникла около 1900 года для объяснения странного поведения веществ в микромире, которое тогда вдруг начали обнаруживать физики-экспериментаторы, и очень быстро превратилась в самую успешную физическую теорию, когда-либо придуманную человечеством. Там – на уровне молекул, атомов и, особенно, элементарных частиц, из которых складываются атомы, – вещество ведет себя удивительно и загадочно. Настолько удивительно и загадочно, что совершенно неясно, применимо ли ко всему этому слово «вещество». Волны, такие как свет, иногда ведут себя как частицы, фотоны. Частицы, такие как электроны, иногда ведут себя как волны.
Эту двойственность волны-частицы (так называемый корпускулярно-волновой дуализм) со временем удалось описать с помощью математических уравнений, которые управляют одновременно волнами и частицами, хотя до сего дня многое остается загадкой. По ходу дела способ представления того и другого в математике пережил радикальную трансформацию и изменился до неузнаваемости. До того момента физики характеризовали состояние частицы вещества лишь небольшим набором параметров: масса, размер, положение в пространстве, скорость, электрический заряд и т. д. В квантовой механике состояние любой системы характеризуется волной, точнее говоря, ее волновой функцией. Как следует из названия, это математическая функция с волноподобными свойствами.
Функция – это математическое правило или процесс, который преобразует одно число в другое определенным образом. В более общем случае функция может преобразовывать список чисел в число или даже в другой список чисел. В еще более общем случае функция может оперировать не только числами, но и множеством математических объектов любого рода. Например, функция «площадь треугольника» действует для множества всех треугольников, и, когда вы применяете ее к конкретному треугольнику, значением функции становится площадь этого треугольника.
Волновая функция квантовой системы действует для списка возможных измерений, которые мы можем произвести в системе, таких как координаты ее положения и компоненты скорости. В классической механике состояние системы обычно определяется конечным числом таких чисел, но в квантовой механике список может включать бесконечно много переменных. Они берутся из так называемого гильбертова пространства, которое (часто) представляет собой пространство бесконечной размерности с однозначно определенным понятием расстояния между любыми двумя его точками{51}
. Волновая функция дает на выходе единственное число для каждой функции в гильбертовом пространстве, но число это не действительное, а комплексное.