Читаем Это база: Зачем нужна математика в повседневной жизни полностью

Когда мы представляем комплексное число z в виде z = x + iy, где x и y действительные числа, в основе такого представления лежит геометрическая система декартовых координат с двумя осями, расположенными под прямым углом друг к другу: это действительная часть x (горизонтальная ось) и мнимая часть y (вертикальная ось). Однако на плоскости существует еще одна система координат – полярные координаты, в которых точка представляется как пара (r, A), где r – положительное действительное число, а A – угол. Эти две системы тесно взаимосвязаны: r – это расстояние от начала координат 0 до точки z, а A – угол между действительной осью и прямой, соединяющей начало координат с z.


Геометрия комплексной плоскости в декартовых и полярных координатах. Здесь cos и sin – тригонометрические функции косинус и синус. (Рисунок, по существу, определяет эти функции.)


Декартовы координаты идеальны для описания движения невращающихся объектов. Если точка x + iy смещается на a единиц по горизонтали и на b единиц по вертикали, она оказывается в точке (x + iy) + (a + ib). Если распространить эту идею на множество точек со списком значений для x и y, то все множество сдвинется на a единиц по горизонтали и на b единиц по вертикали в случае добавления фиксированного комплексного числа a + ib к каждой его точке. Более того, это жесткое движение: весь объект движется целиком, не меняя ни формы, ни размера.

Еще одним типом жесткого движения является вращение. Здесь объект опять же не меняет ни формы, ни размера, но изменяет ориентацию, поворачиваясь на некоторый угол вокруг центральной точки. Ключевое наблюдение здесь состоит в том, что умножение на i поворачивает точки на 90º вокруг центра в начале координат. Именно поэтому ось y, представляющая мнимую часть y числа z, расположена под прямым углом к оси x, которая представляет действительную часть x. (Несмотря на название, мнимая часть – это действительное число: она становится мнимой, когда мы умножаем ее на i, чтобы получить iy.)

Если мы хотим повернуть множество точек на 90°, то умножаем каждую точку этого множества на i. В более общем случае если мы хотим повернуть множество точек на угол A, то небольшое упражнение в тригонометрии покажет, что нужно умножить все точки множества на комплексное число

cos A + i sin A.

Параллельный перенос (слева) и поворот (справа) множества точек PIG с использованием комплексных чисел


Эйлер нашел замечательную и красивую связь между этим выражением и комплексным аналогом экспоненциальной функции ex, где e = 2,71828… – основание натурального логарифма. Мы можем определить экспоненциальную функцию ez комплексного числа z таким образом, чтобы она обладала теми же базовыми свойствами, что действительная экспонента, и совпадала с ней при действительном z. Оказывается, что

eiA = cos A + i sin A.

Элегантный способ понять, почему это происходит, состоит в использовании дифференциальных уравнений. Я поместил его в Примечания{50}, потому что выглядит все это слишком формально.

Представление комплексного числа в полярных координатах выглядит следующим образом:

r(cos A + i sin A) = reiA.

Получилась очень простая и компактная формула.

Красота геометрии комплексных чисел заключается в том, что они имеют сразу две естественные координатные системы – декартову и полярную. Параллельный перенос в декартовых координатах описывается простой формулой, но в полярных координатах порождает путаницу. Поворот, напротив, в полярных координатах описывается простой формулой, зато в декартовых порождает путаницу. Пользуясь комплексными числами, вы можете сами выбирать, какое их представление лучше всего отвечает вашим целям.

Эти геометрические свойства комплексной алгебры можно было бы использовать в двумерной компьютерной графике, но оказывается, что, поскольку геометрия на плоскости проста, а компьютеры легко просчитывают громоздкие формулы, большой выгоды вы от этого не получите. В главе 7 мы увидим, что в случае компьютерной графики в трех измерениях аналогичный фокус творит чудеса. Однако пока мы завершим историю комплексных чисел рассказом о некоторых по-настоящему полезных сферах их применения.

* * *

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От болезни тела – к исцелению души. Почему мы болеем?
От болезни тела – к исцелению души. Почему мы болеем?

Все болезни имеют глубокий смысл. Они передают ценнейшие послания психики. Психолог Торвальд Детлефсен и врач Рудигер Дальке помогают нам понять, о чем свидетельствуют инфекционные заболевания, головные боли, несчастные случаи, сердечные приступы и желудочные колики, а также рак и СПИД. Если вы осознаете картину собственной болезни, то сможете найти новый прямой путь к самому себе. Болезнь не является неприятной помехой на этом пути, ибо она сама – путь. Чем сознательнее мы к ней относимся, тем лучше она выполняет свои задачи. Наша цель – не борьба с болезнью, а ее использование для исцеления души.

Рудигер Дальке , Торвальд Детлефсен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Эзотерика / Здоровье и красота / Дом и досуг