Читаем Этот правый, левый мир полностью

Хлорид натрия, или обычная поваренная соль, также имеет кубическую решетку (рис. 24), но атомы, образующие ее, ионизованы. У натрия на внешней оболочке только один электрон. У хлора на внешней оболочке семь электронов, но там можно разместить и восемь. На этой оболочке есть, так сказать, пустое место, куда можно поместить еще один электрон. Когда два атома встречаются, одинокий электрон натрия заполняет пустое место в оболочке хлора, образуя прочную, устойчивую молекулу поваренной соли. Поскольку каждый атом в такой решетке или лишен одного своего электрона, или имеет один лишний, то и несет соответственно положительный или отрицательный электрический заряд. Как упоминалось выше, такие атомы называются ионами. Из них и состоит кристаллическая решетка.

Рис. 22. Гранецентрированная кубическая решетка «сухого льда». Черными кружками изображены молекулы двуокиси углерода.

Строение кристаллической решетки оказывает сильное влияние на видимую форму кристаллических тел. Поваренная соль, например, легко раскалывается вдоль плоскостей решетки. Если вы внимательно посмотрите на кристаллы поваренной соли через увеличительное стекло (или, еще лучше, через микроскоп), то заметите, что крупинки соли имеют в действительности форму крошечных кубиков. Вы, конечно, увидите не элементарную кристаллическую решетку, изображенную на рисунке, — для этого не хватит увеличения лучших микроскопов — а всего лишь маленькие соляные кристаллики, которые принимают кубическую форму потому, что такова форма решетки поваренной соли.

Рис. 23. Объемноцентрированная решетка металлического натрия. Кружки — атомы натрия.Рис. 24. Кубическая решетка поваренной соли. Ионы натрия (черные кружки) чередуются с ионами хлора (белые кружки).

Но не следует думать, что раз структуру решетки нельзя разглядеть в микроскоп, то она не более чем теоретическое построение, и увидеть ее в натуре никак нельзя. Когда-то это было так, но сейчас изобретено много способов «видеть» вещи, слишком маленькие для созерцания невооруженным глазом. Еще в 1912 году немецкий физик Макс фон Лауэ разработал метод наблюдения кристаллической структуры с помощью рентгеновских лучей. В последнее время стали доступны для наблюдения более мелкие детали, для чего через кристалл пропускают электроны, нейтроны и даже ионы. На обложке июньского номера «Сайентифик Америкен» за 1957 год помещена поразительная цветная фотография, показывающая расположение отдельных атомов в кристаллической решетке вольфрама. Фотография была получена с помощью нового прибора, называемого «ионным микроскопом», который дает изображение решетки, увеличенное в два миллиона раз! Так что, как видите, кристаллическая решетка — не выдумка математиков. Теперь она доступна довольно простым способам наблюдения.

Все три описанные кристаллические решетки симметричны в том смысле, в каком мы до сих пор использовали это слово, то есть они совместимы со своими зеркальными отражениями. Кроме того, эти решетки обладают и многими другими типами симметрии, изучением которых занимаются кристаллографы, например разными видами осевой симметрии. Это означает, что если вращать решетку определенным образом вокруг некоторой оси, то после поворота она примет точно такой же вид, как имела до него. Если, например, ось проходит через куб, как показано на рис. 25, вы можете, поворачивая, перевести его в четыре различных положения, которые по всем своим свойствам абсолютно одинаковы. Такая ось называется осью симметрии четвертого порядка. Легко видеть, что у куба четыре таких оси. Если ось проходит через куб, как показано на рис. 26, то поворотами вокруг такой оси его можно поместить в одно из двух одинаковых положений. Такая ось называется осью симметрии второго порядка. Таких осей у куба шесть.

Кристаллы могут обладать осями симметрии второго, третьего, четвертого и шестого порядков. Симметрию пятого порядка кристаллическая решетка иметь не может. Вы можете выложить паркет из треугольников, квадратов и шестиугольников, но не из пятиугольников. По той же причине пятиугольные («пентагональные»), формы никогда не встречаются у трехмерных кристаллов. В живой природе они встречаются часто. Большинство цветов (например, примула) и некоторые животные (например, морская звезда) обнаруживают пентагональную симметрию, но пентагональных кристаллов нет. Согласно строгим законам геометрии, структура кристаллической решетки не может иметь осей симметрии пятого порядка.

Рис. 25. У куба три оси симметрии четвертого порядка. На рисунке — одна из них.Рис. 26. Одна из шести осей симметрии второго порядка у куба.

Как мы уже видели, у куба есть оси второго и четвертого порядков. А есть ли у него ось третьего порядка? Большинство людей поражается, когда им говорят, что у куба есть и такие оси — целых четыре штуки.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука