Читаем Этот правый, левый мир полностью

Упражнение 8. Найдите у куба четыре оси симметрии третьего порядка. Иными словами, найдите четыре такие оси, чтобы, вращая куб вокруг любой из них, можно последовательно добиться только трех (ни больше, ни меньше) абсолютно одинаковых положений.

Все эти примеры осевой симметрии можно назвать выполнимыми операциями по той простой причине, что они могут быть произведены в действительности. Тогда симметрию отражения следует называть невыполнимой операцией, потому что нет способа осуществить ее над каким-нибудь реальным твердым телом. Как мы уже знаем, двумерный плоский объект можно отразить, если взять его и перевернуть, но для этого мы должны оперировать с двумерным объектом в 3-пространстве. Точно так же мы смогли бы выполнить отражение над трехмерным твердым телом, если бы знали способ перевести его в пространство высшей размерности. Поскольку такого способа у нас нет, кристаллографы и называют такую операцию невыполнимой. Есть и другие типы невыполнимых операций симметрии, но мы и так уже уделили им больше внимания, чем следует. Симметрия кристаллов — сложная и увлекательная тема, на которую написано огромное количество книг; мы должны устоять перед искушением и не вдаваться в детали. Эта книга — о симметрии вообще. Мы занимаемся кристаллами лишь потому, что нас интересует симметрия отражения, и хотим знать, есть ли у кристаллов плоскость симметрии, совместимы ли они со своими зеркальными отражениями.

Многие минералы находят в виде бесформенных глыб, внешний вид которых не дает никаких или почти никаких указаний об их кристаллическом строении. Счастливым исключением является алмаз — форма кристаллического углерода. Его обычно находят в виде отдельных кристаллов, иногда поразительно правильной формы. Благодаря решетке кубической формы алмаз имеет несколько кристаллических разновидностей. Наиболее часто встречается форма, показанная на рис. 27 слева и известная в геометрии под названием октаэдр (восьмигранник). Обратите внимание на то, что все грани являются равносторонними треугольниками. Фигуры, ограниченные подобно этой плоскими гранями, называются многогранниками. Если многогранник можно положить на стол любой из его плоских сторон, он называется выпуклым. Если все ребра многогранника имеют одинаковую длину, а углы всех граней — одинаковую величину, он называется правильным многогранником.

Имеется только пять правильных выпуклых многогранников: тетраэдр, гексаэдр (куб), октаэдр, додекаэдр и икосаэдр. Иногда их называют «телами Платона», потому что Платон написал о них много интересного. В природе их находят в довольно необычных местах; недавно обнаружили, что некоторые вирусы имеют форму тетраэдров, додекаэдров и икосаэдров!

Рис. 27. Три кристаллические формы алмаза, встречающиеся в природе: октаэдр, ромбический додекаэдр и гексагональный октаэдр.

Ромбический додекаэдр (см. рис. 27, в центре) и гексагональный октаэдр (см. рис. 27, справа) —две другие поразительно красивые кристаллические формы, которые иногда имеет алмаз. Все три перечисленные кристаллические формы симметричны; каждая обладает многими плоскостями и осями симметрии, расположение которых определяется свойствами основной кристаллической решетки. Углерод приобретает кристаллическое строение алмаза, если его подвергнуть высокому давлению. Атомы в его решетке упакованы настолько плотно, что сблизить их еще больше почти невозможно; именно поэтому алмаз — самое твердое из веществ, известных в природе. Углерод может иметь кристаллическую решетку и другой формы, где атомы расположены менее тесно, — это графит, используемый в обычных карандашах, а когда кристаллическая структура разрушается полностью, получается древесный уголь или сажа. Вся разница между сажей, покрывающей печные стенки, и бриллиантом, сверкающим на женском пальце, заключается в различном порядке расположения углеродных атомов!

Очень распространенной кристаллической формой, почти такой же, как кубическая, является ромбоэдр, показанный на рис. 28. Все шесть граней у него в точности одинаковы, это ромбы, и все ребра имеют одинаковую длину. Это как будто куб, сжатый с двух противоположных углов. Такую форму имеют часто встречающиеся кристаллы минерала кальцита (углекислый кальций), а также азотнокислого натрия. Достаточно ли ясно вы представляете себе их форму, чтобы решить, симметрична она или нет?

Рис. 28. Ромбоэдр

Упражнение 9. Не прибегая к изготовлению картонной модели, можете ли вы обнаружить у ромбоэдра одну или несколько плоскостей симметрии? Конечно, если вы найдете даже единственную плоскость симметрии, тело будет симметричным и его можно совместить с отражением в зеркале.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука