Но мало того, что модели ионной и ковалентной связей нелепы, взятые по отдельности – ещё они находятся в вопиющем противоречии друг с другом. Действительно, в модели ковалентной связи перекрытие электронных облаков допустимо, причём, оно-то, якобы, и порождает сцепку атомов – но в модели ионной связи, как мы видели выше, перекрытие электронных облаков недопустимо, поскольку оно порождает чудовищные силы отталкивания! Одного лишь этого противоречия достаточно для вывода о том, что концепции ионной и ковалентной связи не могут быть, по крайней мере, обе верными – и, для объяснения свойств какой-либо конкретной связи, не следует использовать обе эти концепции сразу. Но, ввиду большого количества нестыковок между расчётными и экспериментальными значениями межъядерных расстояний и энергий диссоциации, корифеи заговорили о «частично-ионном характере» ковалентных связей [П5,П2], и эту находку подхватили авторы учебников по физической химии: «
Сегодня подобное «объяснение» может вызвать улыбку у специалистов, которые пытаются разрешить гораздо более утончённые проблемы в воззрениях на химическую связь [Ч1]. Но эти проблемы проистекают, на наш взгляд, из неадекватности базовых представлений о том, на чём же держатся молекулы. Ну, действительно: если нет объяснения того, что отличает валентные электроны от невалентных – откуда взяться адекватным представлениям о химической связи?
5.7. Модель химической связи в «цифровом» мире.
Как мы излагали выше (5.4), отличительным признаком валентных электронов – а, точнее, атомарных валентных связок «протон-электрон» - является способность к продуцированию зарядовых разбалансов, через сдвиг скважности связующих прерываний в такой связке. Валентный электрон пребывает в достаточно компактной области удержания (4.9), в которой, собственно, на него и действует связующий алгоритм. Хорошо известен феномен «направленных валентностей» (см., например, [К2]), благодаря которому, связи в сложных молекулах оказываются ориентированы под вполне определёнными углами друг к другу. Это означает, что конфигурация областей удержания валентных электронов в атоме задана достаточно жёстко.
Пусть у двух атомов, имеющих по одному валентному электрону, оказались перекрыты их области удержания. Как отмечалось ранее (5.5), электрон, находящийся в зоне такого перекрытия, не может одновременно испытывать действие двух разных алгоритмов, формирующих атомарные валентные связки «протон-электрон». Проще говоря, такой электрон не может входить в состав обоих атомов одновременно. Но при этом мы усматриваем возможности для циклических переформирований составов валентных связок и, соответственно, циклических переключений валентных электронов из состава одного атома в состав другого.
В самом деле, пусть валентная связка одного из этих атомов приобрела энергию возбуждения, т.е. энергию переменного зарядового разбаланса (5.1). В условиях теплового равновесия, наиболее вероятная частота переменного зарядового разбаланса соответствует максимуму равновесного спектра, т.е. энергии 5
Рис.5.7