Заметим, что вывод об отсутствии энергии химических связей вполне согласуется с представлениями (5.6) о том, что, в отличие от ядерных и атомных структур, напрямую формируемых структуро-образующими алгоритмами, молекулы (за исключением биомолекул в одушевлённых организмах) образуются «сами по себе» - если это допускается физическими параметрами среды. Энергия структурных связей в веществе, как отдельная форма энергии, имеет место тогда, когда она, по логике «цифрового» мира, программно обеспечена: структуро-образующий алгоритм
5.8. Разрешение парадоксов молекулярных спектров.
Поразительное свидетельство о том, что «энергия диссоциации» - при сообщении которой химическая связь разрывается – совсем не равна глубине потенциальной ямы, в которой находились связанные атомы, дают молекулярные спектры излучения-поглощения. Для сравнения: в любом связанном состоянии атомарного электрона, его энергия связи всегда равна минимальной энергии, при сообщении которой электрон отрывается от атома. Разумеется, энергии ионизации атома из возбуждённых состояний меньше, чем из основного. Но уровень, на который следует «вытащить» электрон для его отрыва – один для всех связанных состояний. Не наблюдалось случаев, чтобы, при сообщении атому энергии, существенно большей, чем энергия ионизации из текущего связанного состояния, атомарный электрон вновь оказывался бы в связанном состоянии. А для молекул подобный феномен нормален – даже в случае одинарной связи.
Действительно, справочные значения энергий диссоциации обычно приводятся для основного электронного состояния молекулы – самого сильно связанного. Но, как следует из молекулярных спектров (см.
Мы этот парадокс устраняем: энергия химической связи иллюзорна (5.7) – а, значит, иллюзорны и изменения этой энергии при молекулярном излучении-поглощении. Тогда молекулярные спектры свидетельствуют вовсе не о том, что, при излучении-поглощении квантов молекулой, происходят соответствующие изменения
Что же касается ортодоксов, которые энергию химической связи считают реальностью, то они названный парадокс не устраняют и не разрешают – они про него просто помалкивают. Каждому электронному состоянию молекулы ставят в соответствие потенциальную кривую типа потенциала Ми (5.6.1). Считается, что устойчивость молекулы не может быть обеспечена иначе, как с помощью подобной потенциальной ямы – у которой по оси абсцисс отложено межъядерное расстояние. Соответственно, допускаются колебания связанных атомов – около равновесного значения этого расстояния. Полагают, что с помощью квантованных значений энергии таких колебаний объясняется происхождение серий колебательных линий. Но, на наш взгляд, такой подход совершенно неадекватен реалиям. Гладкая и непрерывная кривая потенциальной ямы годится для решения задачи о механических колебаниях – энергия которых зависит от двух параметров, амплитуды и частоты, причём эта энергия отнюдь не квантуется, изменяясь непрерывно. Совсем другое дело – дискретные уровни энергии, переходам между которыми соответствуют кванты, энергии которых зависят не от двух параметров, а только от одного: от частоты. Налицо фундаментальное противоречие: ряды дискретных колебательных энергий молекулы не могут быть обусловлены механическими колебаниями!