Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Чтобы понять, насколько трудно оказалось противоречить Евклиду, стоит задуматься о том, сколь глубоко укоренилось его описание пространства. «Начала» и в его-то времена были классикой. Евклид не только определил природу математики, но его книга играла ключевую роль в образовании и натурфилософии как образец логического мышления. Эта работа имела решающее значение для интеллектуального возрождения в Средние века. Этот труд после изобретения печатного станка в 1454 году издали одним из первых, а с 1533 года и до XVIII века она оставалась единственной греческой работой, напечатанной на языке оригинала [133] . До XIX века любой труд по архитектуре, устройство любого рисунка и картины, любая теория или уравнение, примененные в науке, были евклидовыми по умолчанию. И «Начала», конечно, заслуживали своего великого положения. Евклид превратил наше интуитивное чувство пространства в абстрактную логическую теорию, из которой мы научились выводить все остальное. Быть может, нам стоит благодарить Евклида в первую очередь за то, что он осмелился без стыда оголить свои допущения и никогда не претендовал на то, что доказанные им теоремы есть не более чем логические следствия немногих не доказанных им постулатов. Мы, правда, уже сообщили в части I, что один из его постулатов – постулат параллельности – вызвал неудовольствие практически у всех исследователей, изучавших труды Евклида, поскольку лишен был простоты и интуитивной ясности, свойственной остальным евклидовым допущениям. Вспомним формулировку:

...

Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

Евклид, доказывая первые свои двадцать восемь теорем, постулат параллельности никак не использовал. К тому времени он уже доказал утверждение, обратное этому постулату, а также и другие, куда более пригодные для звания аксиом, – вроде фундаментального факта, что сумма длин двух любых сторон треугольника всегда больше длины третьей. Так зачем же ему, зашедшему так далеко, понадобился этот затейливый и вполне технический постулат? Сроки сдачи книги поджимали, что ли?

За 2000 лет, за 100 поколений родившихся и умерших, пока менялись границы, пока возникали и угасали политические системы, а Земля проскочила 1000 миллиардов миль вокруг нашего Солнца, мыслители планеты по-прежнему оставались привержены Евклиду, не ставя под сомнение слов бога своего, кроме одного малюсенького «но»: можно ли как-нибудь все-таки доказать этот дурацкий постулат?

<p>Глава 14. Незадача с Птолемеем</p>

Первую известную нам попытку доказать постулат параллельности произвел Птолемей – во втором веке н. э. [134] Аргументацию он применил довольно изощренную, но в сути метод оказался прост: он допустил видоизмененную форму постулата и из нее вывел исходный. И что прикажете думать о Птолемее? Он, что ли, жил на территориях, свободных от здравого смысла? Или нам представить, как он несся к друзьям с воплями: «Эврика! Я открыл новый вид доказательства – замкнутого на само себя!»? Математики наступать на эти грабли не стали дважды – они наступали на них снова и снова: как выяснилось, некоторые самые безобидные допущения и кое-какие очевидные настолько, что их оставили недоказанными, оказались замаскированным постулатом параллельности. Связь этого постулата со всей остальной евклидовой теорией столь же тонка, сколь и глубока. Через пару сотен лет после Птолемея Прокл Диадох сделал вторую знаменательную попытку доказать постулат раз и навсегда. Прокл в V веке учился в Александрии, после чего перебрался в Афины, где возглавил Платоновскую академию. Он часами корпел над трудами Евклида. У него был доступ к книгам, давным-давно исчезнувшим с лица Земли, – например, к «Истории геометрии» Евдема, современника Евклида. Прокл написал комментарии к первой книге «Начал», и они стали источником большой части нашего знания о древнегреческой геометрии.

Чтобы разобраться в доказательстве Прокла, полезно сделать три вещи: во-первых, рассматривать альтернативную формулировку постулата, приведенного выше, – аксиому Плейфэра [135] ; во-вторых, сделать доказательство Прокла чуточку менее техническим; в-третьих, перевести его с греческого. Аксиома Плейфэра звучит так:

...

В плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература