Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Если, согласно принципу эквивалентности, обе интерпретации допустимы, мы вынуждены заключить, что часы, размещенные в гравитационном поле выше, идут быстрее. Из-за поля тяготения Земли часы Алексея, квартирующего на верхней полке, чуточку спешат по сравнению с часами Николая, обитающего на нижней. Самую малость. Даже в поле тяготения Солнца, которое гораздо мощнее, время на Земле, находящейся в 93 миллионах миль над Солнцем, бежит всего на две миллионных доли быстрее, чем на поверхности Солнца. При таких соотношениях существо на Солнце выигрывает всего примерно одну минуту в год[245]. Вряд ли стоит ради этого терпеть тамошний климат. Такое искажение времени влияет на частоту света, которая есть число колебаний световой волны в секунду . Влияние это не сильное, однако его Эйнштейн предсказывал (оно называется гравитационным красным смещением[246]). Из-за этого вашу любимую радиостанцию, вещающую на частоте 1070 АМ-диапазона (т. е. 1070 кГц), у которой передатчик на 110-м этаже Мирового торгового цент ра, надо ловить на частоте 1070,00000000003. Маньяки качественного звука, берите на карандаш.

Эйнштейн впервые выдвинул соображение, что гравитация влияет на ход времени, в 1907 году. Из специальной теории относительности нам известно, что пространство и время взаимосвязаны. Сколько понадобилось времени техническому эксперту, чтобы осознать: присутствие гравитации меняет и форму пространства? Пять лет. Стоит это запомнить — на случай, когда вдруг проглядите что-нибудь, что впоследствии покажется вам очевидным. Эйнштейн говорил: «Если б мы знали, что именно делаем, это не называлось бы исследованием, правда?»[247]

Эйнштейн совершил логический переход к искривленному пространству летом 1912 года в Праге. Шел шестой год размышлений над созревающей теорией относительности. И опять этот шаг был сделан благодаря озарению. Эйнштейн писал: «Из-за лоренцева сокращения в системе отсчета, вращающейся относительно инерциальной, законы, действующие на твердые тела, не отвечают правилам евклидовой геометрии. Значит, евклидову геометрию нужно отставить…»[248] В переводе: «Когда движешься не по прямой, евликдова геометрия искажается».

Представим Ханса Альберта уже десятилетним, но вновь на карусели. Предположим, его отцу, размещенному на неподвижной платформе, карусель видится идеальным кругом. Что сообщает нам специальная теория относительности о пространстве в заданных условиях? (Как и ранее, этот анализ не вполне строг, поскольку связан с применением специальной теории относительности к неравномерному движению.) Представьте, что в каждый момент времени от местоположения Ханса Альберта мы строим две перпендикулярные оси. Одна ось направлена радиально (вовне от карусели). Это направление действия силы, которую в этот миг ощущает Ханс Альберт. Ханс Альберт в этом направлении вовсе не движется — расстояние между ним и центром карусели неизменно. Другая ось — касательная к карусели. В любой заданный момент она указывает направление движения Ханса Альберта. Она всегда перпендикулярна направлению действия силы, которую чувствует мальчик.

Теперь, положим, отец бросает Хансу Альберту крошечный горизонтальный квадратик, и одна его сторона совпадает с радиусом карусели. Он просит Ханса Альберта пронаблюдать за фигурой и сообщить, какой она формы. Что же нам сообщит Ханс Альберт? То, что отцу представлялось квадратом, для него будет выглядеть как прямоугольник. Таков эффект лоренцева сокращения. Поскольку Ханс Альберт в каждый момент времени движется по касательной и никогда — вдоль радиуса, две стороны квадрата, параллельные касательной, сжимаются, а стороны, параллельные радиусу, — нет. Если бы Ханс Альберт измерил длину окружности и диаметр карусели в терминах этих длин соответственно, он обнаружил бы, что их соотношение не равно . Пространство Ханса Альберта искривлено. Его отец заключает, что евклидову геометрию необходимо отставить. Остается единственный вопрос: в пользу чего?

Глава 27. Вдохновился? Попотей

Ломать — не строить. Эйнштейну для построения новой физики требовалась новая геометрия, которая описывала бы искажение пространства. К счастью, Риман (и несколько его последователей) уже все придумали. К несчастью, Эйнштейн не слыхал о Римане — как, впрочем, и почти все остальные. Зато Эйнштейн еще как слыхал о Гауссе.

Эйнштейн помнил свой студенческий курс по инфинитезимальной геометрии, включавший гауссову теорию поверхностей. Эйнштейн обратился к своему другу Марселю Гроссманну, которому в 1905 году посвятил свою докторскую диссертацию. Гроссманн к тому времени трудился на ниве математики в Цюрихе и специализировался как раз по геометрии. Встретившись с Марселем, Эйнштейн воскликнул: «Гроссманн, ты должен мне помочь, иначе я сойду с ума»[249].

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже