И впрямь, нам не известно ни одной адаптации, происхождение которой могло бы обойтись без естественного отбора. Как мы можем быть в этом уверены? Применительно к анатомическим чертам мы можем просто проследить их развитие (когда это возможно) по палеонтологической летописи и увидеть, в каком порядке происходили разнообразные изменения. Затем мы можем определить, согласовывается ли по крайней мере последовательность изменений с постепенным процессом адаптации. И в каждом случае мы можем найти хотя бы правдоподобное дарвинистское объяснение. Эту закономерность мы наблюдали на примере превращения рыб в наземных животных в результате эволюции, или наземных животных в китов, или рептилий в птиц. Дело не обязательно должно обстоять именно так. Например, постепенное перемещение ноздрей на макушку у предкового вида китов могло произойти раньше, чем у них развились ласты. Это могло бы быть удачным ходом творца, но не могло возникнуть путем естественного отбора. Однако мы всегда видим эволюционный порядок, в котором есть дарвинистская логика.
Понять эволюцию сложных биохимических процессов и метаболических путей не так-то просто, поскольку в палеонтологической летописи они следов не оставили. Их эволюцию приходится реконструировать более спекулятивными способами, пытаясь понять, как эти пути метаболизма могли сложиться из более простых биохимических предшественников. Мы хотели бы установить, какие шаги привели к появлению этих сложных черт, увидеть, повышал ли очередной шаг приспособленность организма.
Хотя сторонники теории разумного творения заявляют, что и биохимические процессы находятся в руках высшего творца, благодаря упорным научным исследованиям уже начинают вырисовываться правдоподобные сценарии, которые можно проверить научным путем, – сценарии того, как развились эти черты. Давайте для примера рассмотрим, как развивался механизм свертывания крови у позвоночных. Процесс состоит из цепочки событий, которая начинается с того, что в поврежденном кровеносном сосуде происходит агрегация белков. Это запускает сложную каскадную реакцию, состоящую из 16 этапов, каждый из которых включает взаимодействие двух разных пар белков. Процесс завершается формированием сгустка крови. В целом в этом участвует более двадцати разных белков. Как, предположительно, мог выработаться такой процесс?
Пока нам это в точности не известно, но у нас есть доказательства того, что система могла сложиться в результате адаптивных изменений из более простых процессов. Многие белки, участвующие в свертывании крови, контролируются родственными генами, которые возникают путем дупликации – мутации, при которой предковый ген, а позже его потомки полностью удваиваются из-за ошибки в ходе деления клеток. Впоследствии эти дуплицированные гены могут эволюционировать в разном направлении и в конечном итоге начать выполнять разные функции, что и происходит в процессе свертывания крови в его нынешнем виде. Мы знаем, что в группах, которые появились до позвоночных, ряд белков и ферментов, участвующих в этом процессе, имели другие функции. Например, ключевую роль в свертывании крови играет белок под названием фибриноген, который растворен в плазме крови. На последнем этапе свертывания крови этот белок расщепляется ферментом, и образующиеся при этом пептиды, которые называются фибринами, склеиваются друг с другом и формируют нерастворимый сгусток, завершая процесс свертывания. Поскольку фибриноген в качестве фактора свертывания крови присутствует у всех позвоночных, по-видимому, он развился из белка, который нес иную функцию у живших раньше предковых видов позвоночных, лишенных механизмов свертывания крови. Хотя разумный творец и мог бы создать подходящий белок, эволюция так не действует. Обязательно должен был существовать некий предковый белок, из которого и развился фибриноген.