«Измерение скоростей эволюции, – пишет В. Грант, – сопряжено со многими техническими и практическими трудностями. Скорость эволюции – это количество эволюционного изменения за единицу времени. Первый возникающий при этом вопрос касается масштаба времени, которого следует придерживаться. Следует ли использовать геологическое время (т. е. промежутки в миллионы лет) или биологическое время (т. е. число поколений)?… Второй вопрос касается типа эволюционных изменений, которые предполагается изучать и измерять… Третий вопрос состоит в том, чтобы найти такую меру для морфологического изменения, которая позволяла бы сравнивать скорости эволюции» (Грант В. Эволюция организмов – М.: Мир, 1980 – 407 с., с. 268).
Все эти вопросы не находят убедительных ответов, но сами дискуссии по столь важной проблеме чрезвычайно полезны для науки. Дальше всех в изучении данной проблемы продвинулся в середине XX века Дж. Симпсон. Он же предложил в качестве единицы измерения скорости эволюции использовать число новых родов, возникающих в палеонтологической летописи за миллион лет. При этом он признает данную меру хотя и практически полезной, но заведомо несовершенной.
Именно в работах Симпсона было убедительно показано, что высокоразвитые организмы эволюционируют с более высокой скоростью, чем примитивные с их высоким темпом размножения, смены поколений и мутагенных изменений. Это обстоятельство со всей убедительностью свидетельствует о том, что мутагенные изменения являются не источником, а скорее тормозом прогресса как в микро-, так и в макроэволюции.
28.3. Синтетическая теория эволюции и теории нейтральности
На рубеже 1960-х – 1970-х годов развитие молекулярной генетики начинает приходить в противоречие с устоями СТЭ и прежде всего – с представлением о способности отбора «творить» из последствий мутагенеза любые эволюционные преобразования. В 1968 г. японский генетик Мотоо Кимура выдвинул гипотезу, согласно которой «в основе эволюционных изменений на молекулярном уровне, т. е. изменений самого генетического материала, лежит не дарвиновский естественный отбор, а случайная фиксация нейтральных или почти нейтральных мутаций» (Кимура М. Молекулярная эволюция: теория нейтральности – М.: Мир, 1985 – 394 с., с. 7).
По мере своего развития эта гипотеза переросла в так называемую теорию нейтральности, вызвавшую первую громкую дискуссию по поводу способности СТЭ объяснить всю совокупность фактов, добываемых генетическими исследованиями.
Теория нейтральности базировалась на двух основных источниках. Первый из них – стохастический подход к популяционной генетике, созданный усилиями основоположников СТЭ Р. Фишера, С. Райта и Дж. Холдейна. Прежде всего, Кимура разошелся с Дж. Холдейном в подсчете скорости аминокислотных замещений при выработке белков млекопитающих. Расхождение было огромно – в несколько сотен раз, и оно коренным образом изменяло всю картину протекания эволюционных процессов, основанную на селективной направленности мелких мутационных изменений. При такой высокой скорости замен нуклеотидов все статистические расчеты, на которых основывалась СТЭ, в том числе и модель Р. Фишера, предполагавшая селективные преимущества мутантных замен, скрытых в гетерозиготном состоянии, оказывались несостоятельными.
Оставалось предположить, что за редкими исключениями огромное большинство нуклеотидных замен являются селективно нейтральными и не поддерживаются отбором, а сохраняются в популяциях совершенно случайно, под действием дрейфа генов, мутационного давления и неизбирательной элиминации. Именно такое предположение и выдвинул первоначально М. Кимура, а затем стал развивать на его основе теорию нейтральности, согласно которой отбор бездействует на молекулярно-генетическом уровне.
По существу, теория нейтральности наносила сильнейший удар по геноцентризму во всех его многообразных проявлениях, хотя сам Кимура истолковывал ее опять же с чисто геноцентрических позиций. Причем геноцентризм Кимуры гораздо радикальнее того, что принят в СТЭ.
Кимура характеризует модель Холдейна, принятую в СТЭ, как детерминистскую и видит ее основной недостаток в том, что в ней не учитывается влияние случайной выборки гамет в популяциях с ограниченной численностью особей (Там же, с. 42). Сам он предлагает ей на смену совершенно индетерминистскую модель, в которой молекулярные структуры ДНК находятся в хаотическом движении, как если бы они действовали не в живых организмах, обусловливая наследственные изменения, а в химических растворах, не имеющих к жизни никакого отношения.
Модель Кимуры базируется на чисто статистических выкладках с применением созданного им самим математического аппарата. Отношение этой модели к реальности весьма ненадежно.