С открытием мутаций как специфических, весьма эффектных для наблюдателей и наследственно закреплённых в определённом числе поколений генотипов и соответствующих им фенотипов, геноцентризм воплотился в мутационизме – представлении о том, что именно мутации и их комбинирование при оплодотворении половых клеток являются первоисточниками любых эволюционных новшеств.
В начале XX века основоположник мутационизма Гуго де Фриз «опроверг» дарвиновскую теорию отбора, убедив научное сообщество в том, что видообразование не нуждается ни в отборе, ни в борьбе за существование, а виды образуются в краткие периоды широкого распространения мутагенеза путём мгновенных мутационных превращений.
Осознание ошибочности теории де Фриза и других ранних мутационистов привело к реабилитации дарвиновской теории отбора, но уже в мутировавшей форме, в сочетании с последовательным геноцентризмом и мутационизмом, которые воспринимались как реализация мечты Дарвина об открытии законов наследственности. Формирование СТЭ шло по линии популяционной генетики, собственно, это и была популяционная генетика, применённая к другим сферам биологии. Особенно укрепились геноцентризм и мутационизм в генетике и теории эволюции после открытия двойной спирали ДНК.
«После открытия двойной спирали ДНК (1953 г.), – пишет В.Назаров, – мутацию стали трактовать в духе моргановской хромосомной теории: в ней видели изменение в тексте ДНК – в структуре нуклеиновой кислоты в пределах локуса – или в строении хромосом. Мутации стали подразделять на генные (точковые), хромосомные и геномные. Казалось, к этим трем типам мутаций сводится всякое наследственное изменение. Благодаря такому ограничению и стала возможной разработка генетико-популяционной модели эволюции в СТЭ» (Там же).
Геноцентризм и мутационизм получили статус прочно обоснованного многочисленными экспериментами достижения науки о наследственности. Генетика этого периода слилась с геноцентризмом и мутационизмом как своей научно доказанной основой. В свою очередь геноцентрическо-мутационистская основа генетики слилась с такой же основой теории эволюции, они образовали единое и неразрывное целое.
Даже попытки построения альтернативных СТЭ моделей эволюции в своём подавляющем большинстве строились на основе геноцентризма и мутационизма (и продолжают строиться до сих пор). Были и тогда исследователи, которые протестовали против того, чтобы видеть в ошибках и сбоях генетического аппарата, в особенности в индуцируемых мутациях, получаемых в лабораториях, источник эволюционных преобразований.
«Они, – констатирует Назаров, – ясно сознавали или интуитивно чувствовали, что такие мутации не более как поломки ДНК, акты её калечения, только нарушающие нормальное развитие и не создающие ничего нового. Нелепо связывать с ними какие-либо эволюционные перспективы» (Там же, с. 396–397). Однако одинокие голоса таких учёных заглушались хором последователей ортодоксальной теории.
«Вместе с постулатом, что единственным источником эволюции являются мутации, – продолжает В.Назаров, – в СТЭ прочно утверждалось представление об однозначном соответствии мутации и признака, о том, что возникновение нового устойчивого фенотипа является автоматическим следствием проявления мутации. С этих позиций эволюция предстаёт как результат сортировки и накопления естественным отбором серии таковых мутаций» (Там же, с.395).
Однако дальнейшее развитие генетики стало постепенно подрывать идиллические представления о простой и однозначной зависимости фенотипов от генов. «Связь между генотипом и фенотипом, – пишет В.Назаров, – оказалась гораздо сложнее: она опосредована процессами индивидуального развития… Гомологичные гены вызывают у разных видов появление различных фенотипических признаков и, наоборот, сходные признаки могут индуцироваться разными генами, даже находящимися в разных хромосомах. И примеров такого несоответствия накопилось великое множество» (Там же, с.396).
В результате многие генетики стали считать, что любой признак определяется генотипом в целом. Такого же мнения придерживается и В.Назаров. Но это тоже неверно, тоже представляет собой результат геноцентрического представления о развитии. Конкретные признаки организмов определяются в процессе их биологической работы при взаимодействии генотипа и фенотипа. В этом взаимодействии в процессе онтогенеза активная роль шаг за шагом переходит к фенотипу, а роль генотипа сводится к функции поставщика нужных материалов.
С возникновением молекулярной генетики стали очевидными многие недостатки генетики «классической». Однако геноцентрическое упрощение процессов развития сохранилось и здесь.