Читаем Фармакологическая помощь спортсмену: коррекция факторов, лимитирующих спортивный результат полностью

Основные энергопреобразующие процессы совершаются в митохондриях. Поломка отдельных элементов в этой структуре ведет к нарушению энергетического гомеостаза с серьезными последствиями для клетки, органа или организма в целом. Группа ферментов, локализованная по внутренней мембране митохондрий и участвующая в процессах биотрансформации энергии, получила название дыхательной цепи (см. рис. 3).


Рис. 3. Упрощенная схема работы дыхательной цепи


Принято считать, что митохондриальная цепь состоит из четырех групп ферментов и белков, компактно локализованных во внутренней мембране митохондрий (Рубин А., Шинкарев В.П.). Подобные группы ферментов принято называть комплексами. Перенос восстановительных эквивалентов от комплекса к комплексу может быть реализован только с использованием низкомолекулярных переносчиков, способных участвовать в окислительно-восстановительных реакциях. Подобных переносчиков в организме известно два: убихинон, цитохром С.

Убихинон обеспечивает связь между комплексом I и II, цитохром С – между III и IV.

Важно отметить, что хотя оба переносчика выполняют сходные функции в общей мембране митохондрии, их работа организована таким образом, что они не мешают друг другу. Убихинон функционирует в толще мембраны, а цитохром С мигрирует по наружной ее поверхности. Пространственное разделение обоих потоков позволяет исключить случаи транспортного хаоса.

В качестве энергетического субстрата комплекс I использует НАНД (никотинамидадениндинуклеотид), образующийся в процессах как аэробного, так и анаэробного окисления субстратов. Комплекс II катализирует реакции окисления сукцината, образующегося в цикле трикарбоновых кислот (цикл Кребса).

Кислород является субстратом митохондриальной дыхательной цепи. Дефицит кислорода ведет к ограничению, а при полном прекращении его поступления в организм к быстрой дезорганизации работы дыхательной цепи, ее мультиферментной системы. Главным результатом в этом случае становится истощение клеточных запасов макроэргов и повреждение энергопребразующих механизмов. Такую гипоксию в настоящее время принято называть биоэнергетической. При нарушении энергетических потоков наступает состояние гипоксии тканей.

В зависимости от причин, вызывающих энергетический дефицит, различают четыре вида гипоксии. По сути, биоэнергетическая гипоксия – обязательный этап в каждом из четырех типов.

Гипоксическая гипоксия возникает при снижении парциального давления кислорода в легочных альвеолах, что чаще всего наблюдается при расстройстве системы внешнего дыхания или при подъеме на высоту, в горах.

Гемическая гипоксия наступает при дефиците или нарушении функционирования эритроцитарных клеток, специализирующихся на доставке кислорода из легких в ткани-потребители. При этом различают анемический тип гемической гипоксии, связанный с уменьшением концентрации гемоглобина, и патологический тип, наблюдаемый при инактивации гемоглобина.

Если гипоксия тканей связана с нарушением кровообращения, выделяют циркуляторную гипоксию. Она может быть связана как с местным, так и системным нарушением кровообращения или с перфузией ткани кровью.

Отдельно рассматривают случаи тканевой гипоксии, когда р02 в крови соответствует норме, гемоглобин эффективно связывает молекулы кислорода, а кровь успешно доставляет его в ткани, но последние не в состоянии его использовать. Тканевая гипоксия наступает при отравлении митохондриальных ферментов дыхательными ядами, например цианидами или угарным газом, при дефиците окислительно-восстановительных ферментов или их посредников, возникающем при гормональной недостаточности, а также при повреждении митохондриальных мембран. К тканевой гипоксии как критическому состоянию приводит любой вид неустойчивой гипоксии.

Гипоксию можно рассматривать как одну из разновидностей стрессорных состояний и в соответствии с законом Селье следует ожидать три фазы ответа организма на стресс.

Перейти на страницу:

Похожие книги