Читаем Фармакологическая помощь спортсмену: коррекция факторов, лимитирующих спортивный результат полностью

Однако относительный субстратный дефицит вскоре сменяется на абсолютный. Последнее обстоятельство связано с повреждением мембранных структур. По мере поэтапного выключения в условиях гипоксии отдельных комплексов дыхательной цепи наблюдается последовательное снижение сопрягающих функций митохондрий. Открываются протонные каналы во внутренней мембране митохондрий, что обеспечивает на время поступление свежих партий макроэргов. И за их появление приходится платить все более дорогую цену. В результате набухания митохондрий и дальнейшего увеличения размера пор из матрикса в цитоплазму клетки перемещаются различные субстраты и низкомолекулярные белки, включая цитохром С. Потере последнего способствует снижение мембранного потенциала на митохондриальной мембране. Как известно, молекула фермента имеет избыточный положительный заряд и удерживается на внутренней стороне митохондриальной мембраны преимущественно за счет электростатических сил притяжения. По мере снижения величины мембранного потенциала молекулы цитохрома С начинают покидать поверхность мембраны и комплекс IV лишается своего субстрата. Дыхательная активность в этом случае полностью подавляется, и клетка гибнет.


Антигипоксэнты

Антигипоксантами называют средства, улучшающие усвоение организмом кислорода и снижающие потребность органов и тканей в кислороде, тем самым способствующие повышению устойчивости организма к кислородной недостаточности.

Исследования убедительно свидетельствуют, что наиболее перспективны в борьбе с гипоксией в спорте фармакологические средства, воздействующие на митохондриальные комплексы (табл. 12-14).

Условно антигипоксанты могут быть разделены на группы:

– препараты непосредственно антигипоксического действия;

– корригирующие метаболизм в клетке:

• мембранопротекторного действия,

• прямого энергизирующего действия (влияющие на окислительно-восстановительный потенциал клетки, цикл Кребса и комплексы дыхательной цепи митохондрий);

– действующие на транспортную функцию крови:

• повышающие кислородную емкость крови,

• повышающие сродство гемоглобина к кислороду,

• вазоактивные вещества эндогенной и экзогенной природы.


Таблица 12

Биоэнергетическое воздействие отдельных препаратов на коплексы митохондриальной дыхательной цепи


Таблица 13

Применение антигипоксантов


Таблица 14

Антигипоксанты

Примечание. Применяется один из представленных в таблице препаратов, оказывающий максимальное действие с минимальными осложнениями и побочными эффектами.


Олифен (гипоксен). Антигипоксант. Механизм действия олифена на клетки заключается в снижении потребления тканями кислорода, его более экономном расходовании в условиях гипоксии.

Олифен – фермент дыхательной цепи синтетической природы. Обладая высокой электронно-обменной емкостью за счет полифе-нольной структуры молекулы, олифен оказывает шунтирующее действие на стадии образования молочной кислоты из пировино-градной кислоты, образуя ацетил Ко А, который затем вовлекается в цикл трикарбоновых кислот. Олифен на молекулярном уровне облегчает тканевое дыхание в условиях гипоксии за счет способности непосредственно переносить восстановленные эквиваленты к ферментным системам. Препарат многократно компенсирует недостаток убихинона в условиях гипоксии, так как содержит большое количество функциональных центров. Таким образом, олифен компенсирует деятельность митохондриальной дыхательной цепи при наличии повреждений на ее участках.

Антиоксидантное действие олифена связано с его полифеноль-ной структурой, которая защищает мембраны клеток и митохондрий от разрушительного воздействия свободных радикалов, образующихся в процессе перекисного окисления липидов. Этот патологический процесс запускается при экстремальных физических и психоэмоциональных воздействиях на организм.

Олифен улучшает переносимость гипоксии за счет увеличения скорости потребления кислорода митохондриями и повышения сопряженности окислительного фосфорилирования.

Будучи препаратом прямого действия, может обеспечить кислородом любую клетку за счет малых размеров собственных молекул. В связи с этим его применение возможно при всех видах гипоксии.

Экономное расходование энергетических запасов происходит за счет переведения с гликолитического на аэробное окисление энергетических субстратов, т е. на более выгодный механизм обмена. При этом выход энергии увеличивается в 19 раз, так как при анаэробном гликолизе одной молекулы получается 2 молекулы АТФ, а при аэробном – 38 молекул АТФ.

Водорастворимый антиоксидант, обладая высокой энергетической емкостью, ставит большое количество электронных ловушек. Окислительно-восстановительный потенциал олифена – 680, коэнзима Q10 – 122.

Перейти на страницу:

Похожие книги