Читаем Фармакологическая помощь спортсмену: коррекция факторов, лимитирующих спортивный результат полностью

По мере снижения содержания АТФ в клетке наблюдается уменьшение АТФ-зависимых реакций, в том числе синтеза ацилкарнитина, что нарушает доставку жирных кислот через внутреннюю мембрану митохондрий. Для исключения субстратного дефицита в клетке происходит перераспределение энергетического потока с жирных кислот на глюкозу. Этому способствует повышение концентрации катехоламинов в крови и активация процесса расщепления гликогена в печени. По мере снижения содержания АТФ и увеличения АМФ в цитоплазме происходит активация ключевых ферментов гликолиза, в первую очередь фосфофруктоки-назы. Запускаемый в цитоплазме процесс гликолиза протекает параллельно с аэробным окислением субстрата в митохондриях, что на время повышает энергопродуцирующие возможности клетки. Однако вынужденное включение гликолиза ведет к негативным последствиям для клетки. В цитоплазме накапливается молочная кислота и НАДН. Снижение рН среды ведет к ингибированию фос-фофруктокиназы, а дефицит НАДН тормозит одну из стадий гликолиза. В результате гликолитическое расщепление глюкозы вскоре прекращается.

Одна из первых энергоемких функций, от которой миокард вынужден отказаться, – сократительная. В случае продолжающегося роста дефицита макроэргов после прекращения мышечных сокращений происходит ограничение транспортных процессов. В первую очередь прекращается энергозависимый транспорт ионов Са2+ внутрь митохондрий. Так как в цитозоле митохондрий содержание данного иона в 1000 раз больше, чем в цитоплазме, при снижении активности Са2+ –АТФазы наблюдается самопроизвольный обратный поток ионов Са2+ митохондрий в цитоплазму. Аналогичный поток ионов Са2+ наблюдается из другого депо ионов – сар-коплазматического ретикулума. Накопление ионов Са2+ в цитоплазме негативно сказывается на работе миокарда. Известно, что его сократительная активность регулируется путем изменения концентрации данных ионов в миоплазме. С увеличением концентрации ионов Са2+ до 5-7 мкМ наблюдается сокращение миоцитов, а при снижений содержания ионов до 0,1 мкМ в результате их аккумуляции в саркоплазматический ретикулум мышцы расслабляются. Ишемия миокарда, ответственная за появление энергодефицитного

состояния кардиомиоцитов и ограничивающая АТФ-зависимую аккумуляцию избытка ионов Са2+ из цитоплазмы, приводит к нарушению процесса расслабления миофибрилл и развитию сердечно-сосудистых заболеваний (Голлицова Н.Е., СазонтоваТ.Г., 1998). Более того, накопление ионов Са2+ в цитоплазме сопровождается активацией ряда деструктивных Са2+ – зависимых ферментов, в том числе протеаз, липаз, фосфолипаз, что ведет к развитию дегенеративных изменений в поврежденном миокарде.

Одновременно с Са2+ – АТФазой наблюдается снижение активности Na+, К+ – АТФазы, регулирующей содержание основных ионов в клетках. Ионы Na+ устремляются внутрь клетки, а ионы К+ вытекают из цитоплазмы в межклеточное пространство. С увеличением в цитоплазме содержания ионов Na+ по законам осмоса в клетку устремляются потоки воды, выравнивающие осмотическое давление по обе стороны цитоплазматической мембраны. Это ведет к отеку в клетках. Уменьшение активности Na+, К+ – АТФазы сопровождается нарушением электрической стабильности сердца и способствует развитию аритмии вплоть до фибрилляции желудочка.

Нарушение концентраций ионов Na+ и К+ ведет к изменению биоэлектрической активности клеток, уменьшению потенциала покоя, скорости и длительности потенциала действия. Нарушение мембранного потенциала приводит к экстрасистолии (Бершова Т. В. и соавт., 1994). При значительных потерях ионов К+ наблюдается изменение проводимости нервных импульсов, что легко фиксируется по подъему сегмента ST на электрокардиограмме.

При значительной и длительной ишемии сердца и его последующей реперфузии кардиомиоциты испытывают две стрессорные ситуации, связанные вначале с гипоксией тканей и многоуровневой перестройкой метаболизма в условиях энергетического дефицита, а затем при реперфузии ткани, адаптированной к гипоксии, клетки оказываются в состоянии окислительного стресса.

Образование высоких концентраций оксидантов как при ишемии, так и при реперфузии тканей ведет к истощению системы антиоксидантной защиты, что немедленно проявляется в интенсификации деструктивных процессов. Свободные радикалы атакуют фосфолипиды и повреждают мембраны или модифицируют белки, в первую очередь транспортные. И это делает такие белки менее доступными для инактивации свободными радикалами. В обоих случаях использование антиоксидантов уменьшает деструктивное действие, ингибирует развитие аритмий, стабилизирует сердечный ритм. При реперфузии ишемизированной ткани значительное повреждение миокарда может возникнуть в связи с перегрузкой цитоплазмы клеток ионами Са2+. Такой эффект получил название «кальциевого парадокса», и он связан с массовым поступлением внутрь клеток ионов Са2+ за счет Ма+ /Са2+ – обмена.

Перейти на страницу:

Похожие книги