А теперь нетрудно подсчитать, какое число периодов «быстрого» осциллятора укладывается в одном периоде «медленного».
Современная электроника позволяет создавать осцилляторы с периодами 10–12
Можно измерять промежутки времени, гораздо более короткие, чем 10–12
Именно таким методом в последние годы измерялось время жизни ?0–мезона. При наблюдении в микроскоп мельчайших следов, оставленных на фотоэмульсии, в которой родился ?0–мезон, было обнаружено следующее: ?0–мезон, двигаясь со скоростью, близкой к скорости света, прежде чем распасться, проходит в среднем расстояние около 10–7
Развивая технику эксперимента, а если необходимо, меняя определение понятия «время», можно обнаружить еще более быстрые физические процессы. Мы, например, можем говорить о периоде вибраций ядра или о времени жизни недавно обнаруженных «странных» резонансов (частиц), которые уже упоминались в гл. 2. Время жизни этих частиц лишь ненамного больше 10–24 сек! Приблизительно столько времени требуется свету (который имеет наибольшую скорость распространения), чтобы пройти расстояние, равное диаметру ядра водорода (наименьший из известных объектов).
Что можно сказать о еще более коротких интервалах времени? Имеет ли смысл вообще говорить о них, если невозможно не только измерить, но даже разумно судить о процессах, происходящих в течение столь коротких интервалов? Возможно, нет. Это один из тех вопросов, на которые нет ответа. Может быть, кому–нибудь из вас посчастливится ответить на него в ближайшие 20–30 лет.
§ 4. Большие времена
Рассмотрим теперь промежутки времени, большие «суток». Измерять большие времена легко: нужно просто считать дни, пока не придумаем что–нибудь лучшего. Первое, с чем мы сталкиваемся, это год – вторая естественная периодичность, состоящая приблизительно из 365 дней. Интересно, что в природе существуют естественные счетчики лет в виде годовых колец у деревьев или отложений речного ила. В некоторых случаях можно использовать эти естественные счетчики для определения времени, отделяющего нас от какого–либо отдаленного события в прошлом.
Но, когда невозможно считать годы для очень больших отрезков времени, нужно искать какие–то другие способы измерения. Одним из наиболее эффективных методов является использование в качестве «часов» радиоактивного вещества. Здесь мы сталкиваемся с «регулярностью» иного рода, чем в случае, скажем, маятника. Радиоактивность любого вещества для последовательных равных
Если начертить график зависимости радиоактивности от времени, то мы получим кривую типа изображенной на фиг. 5.3.
Мы видим, что если радиоактивность за
Если мы знаем, что какой–то материал, например дерево, при своем образовании содержал некоторое количество
(1/2)t/T=B/A.