Читаем Фейнмановские лекции по физике. 5. Электричество и магнетизм полностью

Обычно безопаснее и проще всего держаться прямоугольных координат. Но стоит упомянуть и одно исключение: поскольку лапласиан С2 есть скаляр, то можно писать его в любой системе координат (скажем, в полярных координатах). Но так как это дифференциальный оператор, то применять его надо только к векторам с фиксированным направлением компонент, т. е. к заданным в прямоугольных координатах. Итак, расписывая наши векторные дифференциальные уравнения покомпонентно, мы будем предварительно выражать все наши векторные поля через их х-, у-, z-компоненты.


* В наших обозначениях выражение (а, b, с) представляет вектор с компонентами а, b, с. Если вам нравится пользоваться единичными векторами i, j и k, то можно написать

* Мы рассматриваем h как физическую величину, зависящую от по­ложения в пространстве, а не как заданную математически функцию трех переменных. Когда h «дифференцируется» по х, у и z или по х', у' и z', то математическое выражение для h должно быть предварительно выраже­но в виде функции соответствующих переменных, Поэтому в новой си­стеме координат мы не отмечаем h штрихом.


Глава 3

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ВЕКТОРОВ


§1.Векторные интег­ралы; криволи­нейный интеграл от ш

§2.Поток векторного поля

§З. Поток из куба; теорема Гаусса

§4.Теплопроводность; уравнение диффу­зии

§5.Циркуляция векторного поля

§6. Циркуляция по квадрату; теорема Стокса

§7. Поля без роторов и поля без дивер­генций

§8.Итоги


§ 1. Векторные интегралы;

криволинейный интеграл от Сш

В предыдущей главе мы видели, что брать производные от поля можно по-разному. Одни приводят к векторным полям; другие — к скалярным. Хотя формул было выведено до­вольно много, все их можно подытожить одним правилом: операторы д/дх, д/ду и д/dz суть три компоненты векторного оператора у. Сейчас нам хотелось бы лучше разобраться в значении производных поля. Тогда мы легче почувствуем смысл векторных уравнений поля.

Мы уже говорили о смысле операции градиен­та (С на скаляр). Обратимся теперь к смыслу опе­раций вычисления дивергенции (расходимости) и ротора (вихря). Толкование этих величин лучше всего сделать на языке векторных интегралов и уравнений, связывающих эти интегралы. Но уравнения эти, к несчастью, нельзя вывести из векторной алгебры при помощи каких-либо легких подстановок, так что вам придется учить их как что-то новое. Одна из этих инте­гральных формул практически тривиальна, а другие две — нет. Мы выведем их и поясним их смысл. Эти формулы фактически являются математическими теоремами. Они полезны не только для толкования смысла и содержания понятий дивергенции и ротора, но и при раз­работке общих физических теорий. Для теории полей эти математические теоремы — все равно, что теорема о сохранении энергии для меха­ники частиц. Подобные теоремы общего харак­тера очень важны для более глубокого пони­мания физики. Но вы увидите, что, за немногими простыми исключениями, они мало что дают для решения задач. К счастью, как

раз в начале нашего курса многие простые задачи будут решаться именно этими тремя интегральными формулами.


Фиг. 3.1. Иллюстрация уравнения (3.1).

Вектор Сш вычисляется на линей­ном элементе ds.

Позже, однако, когда задачи станут потруднее, этими простыми методами мы больше обойтись не сможем.

Мы начнем с той интегральной формулы, куда входит гра­диент. Мысль, которая содержится в ней, очень проста: раз градиент есть быстрота изменения величины поля, то интеграл от этой быстроты даст нам общее изменение поля. Пусть у нас есть скалярное поле ш(x, у, z). В двух произвольных точках (1) и (2) функция я|з имеет соответственно значения ш(l) и ш(2). [Используется такое удобное обозначение: (2) означает точку (x2, y2, z2), а ш(2) это то же самое, что ш(x2, y2, z2).] Если Г (гамма) — произвольная кривая, соединяющая (1) и (2) (фиг. 3.1), то справедлива


Т Е О Р Е М А 1

(3.1)

Перейти на страницу:

Похожие книги

Держи марку!
Держи марку!

«Занимательный факт об ангелах состоит в том, что иногда, очень редко, когда человек оступился и так запутался, что превратил свою жизнь в полный бардак и смерть кажется единственным разумным выходом, в такую минуту к нему приходит или, лучше сказать, ему является ангел и предлагает вернуться в ту точку, откуда все пошло не так, и на сей раз сделать все правильно».Именно этими словами встретила Мокрица фон Липвига его новая жизнь. До этого были воровство, мошенничество (в разных размерах) и, как апофеоз, – смерть через повешение.Не то чтобы Мокрицу не нравилась новая жизнь – он привык находить выход из любой ситуации и из любого города, даже такого, как Анк-Морпорк. Ему скорее пришлась не по душе должность Главного Почтмейстера. Мокриц фон Липвиг – приличный мошенник, в конце концов, и слово «работа» – точно не про него! Но разве есть выбор у человека, чьим персональным ангелом становится сам патриций Витинари?Книга также выходила под названием «Опочтарение» в переводе Романа Кутузова

Терри Пратчетт

Фантастика / Фэнтези / Юмористическое фэнтези / Прочая старинная литература / Древние книги