Читаем Фейнмановские лекции по физике. 7. Физика сплошных сред полностью

т, е. отклонение возрастает пропорционально кубу длины балки. При выводе нашей приближенной теории мы предполагали, что при изгибании поперечное сечение бруска не изменяется. Когда толщина бруска мала по сравнению с радиусом кривизны, поперечное сечение изменяется очень мало и все отлично. Однако в общем случае этим эффектом пренебречь нельзя — согните пальцами канцелярскую резин­ку и вы сами убедитесь в этом. Если первоначально попереч­ное сечение было прямоуголь­ным, то, согнув резинку, вы уви­дите, как она выпирает у основания (фиг. 38.15).

Фиг. 38.15. Согнутая резинка (а) и ее поперечное сечение (б).

Это получается потому, что, согласно отноше­нию Пуассона, при сжатии основания материал «раздается» вбок. Резинку очень легко согнуть или растянуть, но она несколько напоминает жидкость в том отношении, что изменить ее объем очень трудно. Это и сказывается при сгибании резинки. Для несжимаемых материалов отношение Пуассона было бы точно равно 1/2, для резинки те оно близко к этому числу.

§ 5. Продольный изгиб

Теперь воспользуемся нашей теорией, чтобы понять, что про­исходит при продольном изгибе бруска, опоры или стержня. Рассмотрим то, что изображено на фиг. 38.16.

Фиг. 38.16. Продольно изогну­тая балка.

Здесь стержень, обычно прямой, удерживается в согнутом виде двумя проти­воположными силами, давящими на его концы. Найдем форму стержня и величину сил, действующих на концы.

Пусть отклонение стержня от прямой линии между концами будет у(х), где х — расстояние от одного конца. Изгибающий момент в точке Р на рисунке равен силе F, умноженной на плечо, перпендикулярное направлению у:

Воспользовавшись выражением для момента (38.36), имеем

При малых отклонениях можно считать 1/R=-d2y/dx2(от­рицательный знак выбран потому, что кривизна направлена вниз). Отсюда

т. е. появилось дифференциальное уравнение для синуса. Таким образом, для малых отклонений кривая такого про­дольно изогнутого стержня представляет синусоиду. «Длина волны» l. этой синусоиды в два раза больше расстояния L между концами. Если изгиб невелик, она просто равна уд­военной длине неизогнутого стержня. Таким образом, получается кривая

Беря вторую производную, находим

Сравнивая это с (38.45), видим, что сила равна

Для малого продольного изгиба сила не зависит от перемеще­ния у!

Физически же получается вот что. Если сила F меньше опре­деляемой уравнением (38.46), то никакого продольного изгиба не происходит. Но если она хоть немного больше этой силы, то балка внезапно и очень сильно согнется, т. е. под действием сил, превышающих критическую величину p2YI/L2(часто назы­ваемую «силой Эйлера»), балка будет «гнуться». Если на вто­ром этаже здания разместить такой груз, что нагрузка на под­держивающие колонны превысит силу Эйлера, то здание рух­нет. Другая область, где очень важны продольно изгибающие силы,— это космические ракеты. С одной стороны, ракета дол­жна выдерживать свой вес на стартовой площадке и вынести напряжения во время ускорения, а с другой — очень важно свести вес всей конструкции до минимума, чтобы полезная на­грузка и полезная мощность двигателей были как можно больше.

Фактически превышение силы Эйлера вовсе не означает, что после этого балка полностью разрушится. Когда отклонение ста­новится большим, сила благодаря члену (dz/dx)2в уравнении (38.38), которым мы пренебрегли, будет на самом деле больше вычисленной. Чтобы найти силы при большом продольном изги­бании стержня, мы должны вернуться к точному уравнению (38.44), которое получалось до использования приближенной связи между R и y.

Уравнение (38.44) имеет довольно простые геометрические свойства. Решается оно немного сложнее, но зато гораздо интереснее. Вмес­то того чтобы описывать кривую через х и у, можно воспользовать­ся двумя новыми переменными:

S — расстоянием вдоль кривой и

q— наклоном касательной к кри­вой (фиг. 38.17.)

Фиг. 38.17. Координа­ты кривой продольно изогнутой балки S и q.

Тогда кривизна будет равна скорости изменения угла с расстоянием

Поэтому точное уравнение (38.44) можно записать в виде

После взятия производной этого уравнения по S и замены dy/dS на sinq получим

[Если углы q малы, то мы снова приходим к уравнению (38.45), стало быть здесь все в порядке.

Не знаю, можете ли вы еще удивляться, но уравнение (38.47) получилось в точности таким же, как и для колебаний маятника с большой амплитудой (разумеется, с заменой F/YI другой постоянной). Еще раньше, в гл. 9 (вып. 1), мы узнали, как нахо­дить решение такого уравнения численным методом. В ответе вы получите очаровательную кривую. На фиг. 38.18 показаны три кривые для разных значений постоянной F/YI.

Перейти на страницу:

Похожие книги