Могло бы также случиться, что частица b
рассеялась в направлении 1, а частица а —в направлении 2. Амплитуда такого процесса была бы равна<2|а
><1|b>, а вероятность такого события равна|<2|а
><1|b>|2=|a2|2|b1|2.Представим себе теперь, что имеется пара крошечных счетчиков, которые ловят рассеянные частицы. Вероятность Р2
того, что они засекут сразу обе частицы, равна простоP
2=|a1|2|b2|2+|a2|2|b1|2. (2.3)Положим теперь, что направления 1 и 2 очень близки. Будем считать, что а
с изменением направления меняется плавно, тогда а1и а2 при сближении направлений 1 и 2 должны приближаться друг к другу. При достаточном сближении амплитуды а1и а2 сравняются, и можно будет положить а1=а2 и обозначить каждую из них просто а; точно так же мы положим и b1=b2=b. Тогда получимР
2=2|а|2|b|2. (2.4)Теперь, однако, предположим, что а
и b — тождественные бозе-частицы. Тогда процесс перехода а в состояние 1, а b в состояние 2 нельзя будет отличить от обменного процесса, в котором b переходит в 2, а а — в 1. В этом случае амплитуды двух различных процессов могут интерферировать. Полная амплитуда того, что в каждом из счетчиков появится по частице, равна<1| а
><2|b>+<2|а><1|b>, (2.5)и вероятность того, что ими будет зарегистрирована пара, дается квадратом модуля этой амплитуды:
Р
2= |а1b2+a2b1|2=4|a|2|b|2(2.6)Б итоге выясняется, что вдвое более вероятно
обнаружить две идентичные бозе-частицы, рассеянные в одно и то же состояние, по сравнению с расчетом, проводимым в предположении, что частицы различны.Хотя мы считали, что частицы наблюдаются двумя разными счетчиками,— это несущественно. В этом можно убедиться следующим образом. Вообразим себе, что оба направления 1 и 2 привели бы частицы в один и тот же
маленький счетчик, который находится на каком-то расстоянии. Мы определим направление 1, говоря, что оно смотрит в элемент поверхности dS1 счетчика. Направление же 2 смотрит в элемент поверхности dS2счетчика. (Считается, что счетчик представляет собой поверхность, поперечную к линии рассеяния.) Теперь уже нельзя говорить о вероятности того, что частица направится точно в каком-то направлении или в определенную точку пространства. Это невозможно — шанс зарегистрировать любое фиксированное направление равен нулю. Если уж нам хочется точности, то нужно так определить наши амплитуды, чтобы они давали вероятность попадания на единицу площади счетчика. Пусть у нас была бы только одна частица я; она бы имела определенную амплитуду рассеяния в направлении 1. Пусть<1|а>=a1 определяется как амплитуда того, что а рассеется в единицу площади счетчика, расположенного в направлении 1. Иными словами, мы выбираем масштаб а1и говорим, что она «нормирована» так, что вероятность того, что а рассеется в элемент площади dS1равна
Если вся площадь нашего счетчика DS
и мы заставим dS1странствовать по этой площади, то полная вероятность того, что частица а рассеется в счетчик, будет
Как и прежде, мы хотим считать счетчик настолько малым, что амплитуда а
1на его поверхности не очень меняется; значит, а1будет постоянным числом, и мы обозначим его через а. Тогда вероятность того, что частица а рассеялась куда-то в счетчик, равна
Таким же способом мы придем к выводу, что частица b
(когда она одна) рассеивается в элемент площади dS2с вероятностью
(Мы говорим dS
2, а не dS1в расчете на то, что позже частицам а и b будет разрешено двигаться в разных направлениях.) Опять положим b2 равным постоянной амплитуде b; тогда вероятность того, что частица b будет зарегистрирована счетчиком, равна
Когда же имеются две частицы, то вероятность рассеяния а
в dS1и b в dS2будет
Если нам нужна вероятность того, что обе
частицы (и а, и b) попали в счетчик, мы должны будем проинтегрировать dS1 и dS2по всей площади DS; получится
Заметим, кстати, что это равно просто р
а·рbвточности так, как если бы мы предположили, что частицы а и b действуют независимо друг от друга.Однако, когда две частицы тождественны, имеются две неразличимые возможности для каждой пары элементов поверхности dS
1и dS2. Частица а, попадающая в dS2, и частица b, попадающая в dS1, неотличимы от а в dS1и от b в dS2, так что амплитуды этих процессов будут интерферировать. (Когда у нас были две различные частицы, то, хотя мы на самом деле не заботились о том, какая из них куда попадает в счетчике, мы все же в принципе могли это узнать; так что интерференции не было. А для тождественных частиц мы и в принципе не можем этого сделать.) Мы должны тогда написать, что вероятность того, что пара частиц очутится в dS1и dS2, есть