Однако сейчас, интегрируя по поверхности счетчика, нужно быть осторожным. Пустив dS
1и dS2 странствовать по всей площади DS, мы бы сосчитали каждую часть площади дважды, поскольку в (2.13) входит все, что может случиться с каждой парой элементов поверхности dS1и dS2. Но интеграл можно все равно подсчитать, если учесть двукратный счет, разделив результат пополам. Тогда мы получим, что Р2для тождественных бозе-частиц есть
И опять это ровно вдвое больше того, что мы получили в (2.12) для различимых частиц.
Если вообразить на мгновение, что мы откуда-то знали, что канал b
уже послал свою частицу в своем направлении, то можно сказать, что вероятность того, что вторая частица направится в ту же сторону, вдвое больше того, чего можно было бы ожидать, если бы мы посчитали это событие независимым. Таково уж свойство бозе-частиц. что если есть одна частица в каких-то условиях, то вероятность поставить в те же условия вторую вдвое больше, чем если бы первой там не было. Этот факт часто формулируют так: если уже имеется одна бозе-частица в данном состоянии, то амплитуда того, что туда же, ей на голову, можно будет поместить вторую, в Ц2 раз больше, чем если бы первой там не было. (Это неподходящий способ формулировать результат с той физической точки зрения, какую мы избрали, но, если это правило последовательно применять, оно все же приводит к верному результату.)§ 3. Состояния с n бозе-частицами
Распространим наш результат на тот случай, когда имеются n
частиц. Вообразим случай, изображенный на фиг. 2.4.
Фиг. 2.4. Рассеяние n частиц в близкие конечные состояния.
Есть n
частиц а, b, с, . . . , которые рассеиваются в направлениях 1, 2, 3, . . . , п. Все n направлений смотрят в небольшой счетчик, который стоит где-то поодаль. Как и в предыдущем параграфе, выберем нормировку всех амплитуд так, чтобы вероятность того, что каждая частица, действуя по отдельности, попадет в элемент поверхности dS счетчика, была равна|< >|
2dS.Сперва предположим, что частицы все различимы, тогда вероятность того, что n
частиц будут одновременно зарегистрированы в n разных элементах поверхности, будет равна
Опять примем, что амплитуды не зависят от того, где в счетчике расположен элемент dS
(он считается малым), и обозначим их .просто а, b, с, .... Вероятность (2.15) обратится в
Прогоняя каждый элемент dS
по всей поверхности DS счетчика, получаем, что Рn(разные) — вероятность одновременно зарегистрировать n разных частиц — равна
Это просто произведение вероятностей попаданий в счетчик каждой из частиц по отдельности. Все они действуют независимо — вероятность попасть для одной из них не зависит от того, сколько других туда попало.
Теперь предположим, что все эти частицы — идентичные бозе-частицы. Для каждой совокупности направлений 1, 2, 3, ... существует много неразличимых возможностей. Если бы, скажем, частиц было только три, появились бы следующие возможности:
Возникает шесть различных комбинаций. А если частиц n,
то будет n!разных, хотя и не отличимых друг от друга, комбинаций; их амплитуды положено складывать. Вероятность того, что n частиц будут зарегистрированы в n элементах поверхности, тогда будет равна| a
1b2c3 …+ a1b3c2 … + и т. д. +|2 dS1 dS2 dS3... dSn. (2.18)И снова мы предположим, что все направления столь близки друг к другу, что можно будет положить а1
=а2= . . . . . . =аn=а и то же сделать с b, с, . . . ; вероятность (2.18) обратится в|n
!abc ... |2dS1dS2 ... dSn. (2.19)Когда каждый элемент dS
прогоняют по площади DS счетчика, то всякое мыслимое произведение элементов поверхности считается n!раз; учтем это, разделив на n!, и получим
или
Сравнивая это с (2.17), видим, что вероятность совместного счета n
бозе-частиц в n!раз больше, чем получилось бы в предположении, что все частицы различимы. Все это можно подытожить так:
Итак, вероятность в случае бозе-частиц в n
!раз больше, чем вы получили бы, считая, что частицы действовали независимо. Мы лучше поймем, что это значит, если спросим: чему равна вероятность того, что бозе-частица перейдет в некоторое состояние, в котором уже находятся n других частиц? Обозначим добавленную частицу буквой w. Если всего, включая w, имеется (n+1) частиц, то (2.20) обращается в
Это можно записать так:
или