Читаем Фейнмановские лекции по физике. 8. Квантовая механика I полностью

Теперь наши результаты мы обобщим на три измерения. Стоячая волна в прямоугольном ящике должна обладать целым числом полуволн вдоль каждой оси. Случай двух измерений дан на фиг. 2.9.

Фиг. 2.9. Типы стоячих волн в двух измерениях.

Каждое направление и частота волны описываются вектором волнового числа k. Его х-, у- и z-компоненты должны удовлетворять уравнениям типа (2.34). Стало быть, мы имеем

Число типов колебаний с kxв интервале Dkx, как и прежде, равно

то же и с Dky, и с Dkz. Если обозначить через (k) число таких типов колебаний, в которых векторное волновое число k обладает х-компонентой в интервале от kxдо kx+Dkx, у-компонентой в интервале от kyдо ky+Dky и z-компонентой в интервале от kzдо. kz +Dkz, то

Произведение Lx Ly Lzэто объем V ящика. Итак, мы пришли к важному результату, что для высоких частот (длин волн, меньших, чем габариты полости) число мод (типов колебаний) в полости пропорционально ее объему V и «объему в k-пространстве» DkхDkyDkz. Этот результат то и дело появляется то в од­ной, то в другой задаче, и его стоит запомнить:

Хоть мы этого и не доказали, результат не зависит от формы

ящика.

Теперь мы применим этот результат для того, чтобы найти число фотонных мод для фотонов с частотами в интервале Dw. Нас интересует всего-навсего энергия разных собственных ко­лебаний, а не направления самих волн. Мы хотим знать число собственных колебаний в данном интервале частот. В вакууме величина k связана с частотой формулой

|k| =w/c. (2.39)

Значит, в интервал частот Dw попадают все моды, отвечающие векторам k, величина которых меняется от k до k+Dk незави­симо от направления. «Объем в k-пространстве» между k и k+Dk — это сферический слой, объем которого равен

4pk2Dk.

Количество собственных колебаний (мод) тогда равно

Однако раз нас интересуют частоты, то надо подставить k=w/c, и мы получаем

Но здесь возникает одно усложнение. Если мы говорим о собственных колебаниях электромагнитной волны, то каж­дому данному волновому вектору k может соответствовать любая из двух поляризаций (перпендикулярных друг другу). Поскольку эти собственные колебания независимы, то нужно (для света) удвоить их число. И мы имеем

Мы показали уже [см. (2.33)], что каждое собственное коле­бание (мода, тип колебаний, «состояние») обладает в среднем

энергией

Умножая это на число собственных колебаний, мы полу­чаем энергию DЕ. которой обладают собственные колебания лежащие в интервале Dw

Это и есть закон для спектра частот излучения абсолютно черного тела, найденный нами уже однажды в гл. 41 (вып. 4). Спектр этот вычерчен на фиг. 2.10.

Фиг. 2.10. Спектр частот излучения в полости при тепловом равновесии (спектр «абсолютно чер­ного тела»).

На оси ординат отложена величина

отличающаяся от dE/dw постоянным множителем

Вы теперь видите, что ответ зависит от того факта, что фотоны являются бозе-частицами — частица­ми, имеющими тенденцию собираться всем вместе в одном и том же состоянии (амплитуда такого поведения велика). Бы помните, что именно Планк, изучавший спектр абсолютно чер­ного тела (который представлял загадку для классической фи­зики) и открывший формулу (2.43), положил тем самым начало квантовой механике.

§ 6. Жидкий гелий

Перейти на страницу:

Похожие книги

Жизнь
Жизнь

В своей вдохновляющей и удивительно честной книге Кит Ричардс вспоминает подробности создания одной из главных групп в истории рока, раскрывает секреты своего гитарного почерка и воссоздает портрет целого поколения. "Жизнь" Кита Ричардса стала абсолютным бестселлером во всем мире, а автор получил за нее литературную премию Норманна Мейлера (2011).Как родилась одна из величайших групп в истории рок-н-ролла? Как появилась песня Satisfaction? Как перенести бремя славы, как не впасть в панику при виде самых красивых женщин в мире и что делать, если твоя машина набита запрещенными препаратами, а на хвосте - копы? В своей книге один из основателей Rolling Stones Кит Ричардс отвечает на эти вопросы, дает советы, как выжить в самых сложных ситуациях, рассказывает историю рока, учит играть на гитаре и очень подробно объясняет, что такое настоящий рок-н-ролл. Ответ прост, рок-н-ролл - это жизнь.

Кит Ричардс

Музыка / Прочая старинная литература / Древние книги