Читаем Фейнмановские лекции по физике. 8. Квантовая механика I полностью

Заметьте, что мы не предполагали, что потенциальная энер­гия у нас какая-то особая, это просто энергия, производная от которой дает силу. Например, в опыте Штерна — Герлаха энергия имела вид U=-m·B; отсюда при наличии у В прост­ранственной вариации и получалась сила. Если бы нам нужно было квантовомеханическое описание опыта, мы должны были бы сказать, что у частиц в одном пучке энергия меняется в одну сторону, а в другом пучке — в обратную сторону, (Маг­нитную энергию U можно было бы вставить либо в потенциаль­ную энергию V, либо во «внутреннюю» энергию W;куда именно, совершенно неважно.) Из-за вариаций энергии волны прелом­ляются, пучки искривляются вверх или вниз. (Мы теперь знаем, что квантовая механика предсказывает то же самое искривле­ние, которое следует и из расчета по классической механике.)

Из зависимости амплитуды от потенциальной энергии также следует, что у частицы, сидящей в однородном магнитном поле, направленном по оси z, амплитуда вероятности обязана ме­няться во времени по закону

(Можно считать это просто определением mz.) Иначе говоря, если поместить частицу в однородное поле В на время t, то ее амплитуда вероятности умножится на

сверх того, что было бы без поля. Поскольку у частицы со спи­ном 1/2 величина mz может быть равна плюс или минус какому-то числу, скажем m, то у двух мыслимых состояний в однород­ном поле фазы будут меняться с одинаковой скоростью в про­тивоположные стороны. Амплитуды помножатся на

Этот результат приводит к интересным следствиям. Пусть частица со спином 1/2 находится в каком-то состоянии, которое не есть ни чистое состояние со спином вверх, ни чистое состоя­ние со спином вниз. Его можно описать через амплитуды пре­бывания в этих двух состояниях. Но в магнитном поле у этих двух состояний фазы начнут меняться с разной скоростью. И если мы поставим какой-нибудь вопрос насчет амплитуд, то ответ будет зависеть от того, сколько времени частица провела в этом поле.

В виде примера рассмотрим распад мюона в магнитном поле. Когда мюоны возникают в результате распада p-мезонов, они оказываются поляризованными (иными словами, у них есть предпочтительное направление спина). Мюоны в свою очередь распадаются (в среднем через 2,2 мксек), испуская электрон и пару нейтрино:

При этом распаде оказывается, что (по крайней мере при высо­ких энергиях) электроны испускаются преимущественно в на­правлении, противоположном направлению спина мюона.

Допустим затем, что имеется экспериментальное устройство (фиг. 5.9): поляризованные мюоны входят слева и в блоке ве­щества А останавливаются, а чуть позже распадаются.

Фиг.. 5.9.Опыт с распадом мюона.

Испу­скаемые электроны выходят, вообще говоря, во всех мыслимых направлениях. Представим, однако, что все мюоны будут вхо­дить в тормозящий блок А так, что их спины будут повернуты в направлении х. Без магнитного поля там наблюдалось бы какое-то угловое распределение направлений распада; мы же хотим знать, как изменилось бы это распределение при наличии магнитного поля. Можно ожидать, что оно как-то будет меняться со временем. То, что получится, можно узнать, спросив, ка­кой будет в каждый момент амплитуда того, что мюон обнару­жится в состоянии (+x).

Эту задачу можно сформулировать следующим образом: пусть известно, что в момент t=0 спин мюона направлен по +х; какова амплитуда того, что в момент т он окажется в том же состоянии? И хотя мы не знаем правил поведения частицы со спином 1/2 в магнитном поле, перпендикулярном к спину, но зато мы знаем, что бывает с состояниями, когда спины на­правлены вверх или вниз по полю,— тогда их амплитуды ум­ножаются на выражение (5.34). Наша процедура тогда будет состоять в том, чтобы выбрать представление, в котором ба­зисные состояния — это направления спином вверх или спи­ном вниз относительно z (относительно направления поля). И любой вопрос тогда сможет быть выражен через амплитуды этих состояний.

Пусть |y(t)> представляет состояние мюона. Когда он вхо­дит в блок А, его состояние есть |y (0)>, а мы. хотим знать |y (t)> в более позднее время t. Если два базисных состояния обозначить (+z) и (-z), то нам известны амплитуды <+z|y (0)> и <-z|y (0)> — они известны потому, что мы знаем, что |y (0)> представляет собой состояние со спином в направлении (+x). Из предыдущей главы следует, что эти амплитуды равны

Они оказываются одинаковыми. Раз они относятся к положе­нию при t=0, обозначим их С+(0) и С-(0).

Далее, мы знаем, что из этих двух амплитуд получится со временем. Из (5.34) следует

Но если нам известны C+(t) и C-(t), то у нас есть все, чтобы знать условия в момент t. Надо преодолеть только еще одно затруднение: нужна-то нам вероятность того, что спин (в мо­мент t)окажется направленным по +х. Но наши общие пра­вила учитывают и эту задачу. Мы пишем, что амплитуда пре­бывания в состоянии (+x) в момент t [обозначим ее A+(t)]есть

или

Опять пользуясь результатом последней главы (или лучше равенством

* из гл. 3), мы пишем

Итак, в (5.37) все известно. Мы получаем

или

Перейти на страницу:

Похожие книги

Жизнь
Жизнь

В своей вдохновляющей и удивительно честной книге Кит Ричардс вспоминает подробности создания одной из главных групп в истории рока, раскрывает секреты своего гитарного почерка и воссоздает портрет целого поколения. "Жизнь" Кита Ричардса стала абсолютным бестселлером во всем мире, а автор получил за нее литературную премию Норманна Мейлера (2011).Как родилась одна из величайших групп в истории рок-н-ролла? Как появилась песня Satisfaction? Как перенести бремя славы, как не впасть в панику при виде самых красивых женщин в мире и что делать, если твоя машина набита запрещенными препаратами, а на хвосте - копы? В своей книге один из основателей Rolling Stones Кит Ричардс отвечает на эти вопросы, дает советы, как выжить в самых сложных ситуациях, рассказывает историю рока, учит играть на гитаре и очень подробно объясняет, что такое настоящий рок-н-ролл. Ответ прост, рок-н-ролл - это жизнь.

Кит Ричардс

Музыка / Прочая старинная литература / Древние книги