Читаем Фейнмановские лекции по гравитации полностью

Последнее соотношение может быть доказано более просто, если мы исходим из соотношения (9.2.7) и используем метрический тензор для поднятия и опускания индексов; перестановка метрических тензоров приводит к тому, что величина меняет знак. Для того, чтобы вычислять ковариантную производную тензора, имеющего много индексов, получаем следующее правило


T

;

T

x

+

T

+

T

-

T

.


(9.2.9)


Другими словами, каждый индекс приводит к тому, что добавляется член, который включает в себя и сам тензор. Вряд ли нужно какое-либо другое мнемоническое правило; ковариантная производная вычисляется одинаково для верхних и нижних индексов, причём вычисление производной для верхних индексов идентифицируется со знаком "+", а для нижних индексов со знаком "-", тем самым только это и надо запомнить.

Наиболее хорошо известный пример таких преобразований - это формула для ротора вектора в сферических координатах; эти формулы всегда включают в себя обычные производные, умноженные на величины компонентов этого вектора.

Полезно ещё одно соотношение для ковариантных производных. Так как ковариантные производные метрического тензора равны нулю, как легко может быть показано,


g

;

=

0,


(9.2.10)


то следующее правило применимо для произведения


(A

B

)

;

=

A

B

;

+

A

;

B

.


(9.2.11)


Для того, чтобы показать, что подобные соотношения действительно связывают тензорные величины, всегда допустимо так выбрать координаты, чтобы сделать доказательство проще; тензоры являются такими математическими величинами, что тензорные соотношения, доказанные в одной координатной системе, остаются справедливыми для всех других координат. Последнее соотношение легко может быть доказано при использовании перехода к плоскому касательному пространству; ковариантная производная равна обычной производной в таком пространстве.

Одно из действий кривизны состоит в том, что вторая ковариантная производная не коммутирует с первой. Мы можем явно вычислить такие величины путём повторяющегося использования соотношения (9.2.9). Сначала получаем, что


A

;;

=

[A

;

]

;

=

[A;]

x

+

[A

;

]

-

[A

;

]

,


(9.2.12)


и повторное дифференцирование даёт нам


A

;;

=

^2A

xx

+

x


A

+


+



A

x

+

A

-



A

x

+

A

.


(9.2.13)


Некоммутативность порядка операций взятия ковариантных производных видна, когда мы вычисляем их разность


A

;

-

A

;

=

,

-

,

+

-


A

.


(9.2.14)


Множитель, на который умножается вектор A, должен быть тензором, поскольку величина в левой части последнего соотношения является разностью тензоров. Этот множитель в точности является тензором кривизны, так что


A

;

-

A

;

=

R

A

.


(9.2.15)


9.3. Параллельный перенос вектора

Тот факт, что тензор кривизны появляется в связи с вычислением второй ковариантной производной, служит нам той путеводной нитью, которая позволяет нам дать другую полезную геометрическую интерпретацию кривизны. Свойство некоммутативности вторых производных представляет собой предел разности векторов в том случае, если мы вначале перемещаем его вдоль оси , затем вдоль оси или сначала вдоль оси , затем вдоль оси . Если координаты плоские, то для постоянного вектора нет отличий. Если мы имеем искривлённое пространство и если мы делаем такие перемещения в различном порядке, то мы находим некоторый результирующий вектор. Значимость подобных рассмотрений для получения физических утверждений становится очевидной, когда мы осознаем, что мы не имеем физического способа определения ”подлинно постоянного” векторного поля, за исключением того, чтобы сказать, что это такое векторное поле, чьи компоненты имеют нулевые производные в касательном пространстве.

Рис. 9.1.

Как кривизна появляется при рассмотрении переноса вектора, остающегося параллельным самому себе при перемещении его по поверхности, хорошо иллюстрируется в сферической геометрии. Мы будем представлять себе, что мы переносим маленький вектор с северного полюса по меридиану до экватора, затем вдоль экватора на угол и возвращаем его назад на северный полюс, как показано на рис. 9.1, причём всегда переносим вектор таким образом, чтобы он оставался параллельным самому себе и был направлен на юг. Когда мы возвращаем вектор назад на северный полюс, мы видим, что наш вектор повернулся на угол . Кривизна K поверхности определяется через угол, на который вектор поворачивается в том случае, если мы рассматриваем перенос этого вектора вдоль инфинитезимальной замкнутой траектории. Для поверхности


=

(Площадь внутри замкнутой кривой)

·

K

.


(9.3.1)


Для случая треугольника на сферической поверхности этот угол в точности есть превышение (над величиной 180°) суммы углов треугольника. Для сферической поверхности эта кривизна просто равна 1/R^2.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука