Читаем Feynmann 1 полностью

Зная в каждой точке пространства эту функцию y (х, y, z), можно немедленно вычислить потенциальную энергию тела в любой точке, а именно U(x, у, z) my (х, у, z). Теперь, как видите, это стало делом пустяковым. Но на самом деле это от­нюдь не пустяк, потому что иногда намного приятнее описать поле, задав распределение потенциала во всем пространстве, чем задавать С. Вместо трех сложных компонент векторной функции проще задать скалярную функцию y. Кроме того, когда поле создается многими массами, величину y рассчиты­вать легче, чем три компоненты С: потенциалы—скаляры, их можно просто складывать, не заботясь о направлениях сил. А поле С, как мы сейчас увидим, легко восстановить, зная y. Пусть у нас есть точечные массы m1, m2,... в точках 1, 2..., и мы хотим знать потенциал y в некоторой произвольной точке Р. Тогда он оказывается простой суммой потенциалов отдельных масс в точке Р:

Этой формулой, представляющей потенциал в виде суммы потенциалов отдельных масс, мы пользовались в предыдущей главе, чтобы вычислить потенциал сферического слоя (мы тогда сложили потенциалы всех поясков, на какие был нарезан слой). Итог расчета показан на фиг. 14.4.

Фиг. 14.4. Потенциал тяготею­щего сферического слоя радиусом а.

Потенциал отрицателен, ра­вен нулю на бесконечности, падает как 1/r, пока r не станет рав­ным а, и затем внутри слоя становится постоянным. Вне слоя потенциал равен Gm/r (т— масса слоя), что полностью сов­падает с потенциалом точки с массой т, помещенной в центре сферического слоя. Но такое совпадение существует только для точек снаружи слоя, а во внутренних точках потенциал оказывается равным —Gm/a и больше не меняется! А когда потенциал постоянен, то поля нет: если потенциальная энергия не меняется, то сила отсутствует, потому что, когда мы дви­гаем тело из одной внутренней точки в другую, работа, выполняе­мая силой, в точности равна нулю. Почему? Да потому, что ра­бота передвижения тела из одной точки в другую равна минус изменению потенциальной энергии (или соответствующий ин­теграл от поля равен изменению потенциала). Но потенциальная энергия в обеих точках одинакова, значит, ее изменение равно нулю, и поэтому никакой работы при любых движениях внутри сферического слоя не производится. А это возможно лишь тогда, когда внутри слоя нет никаких сил.

В этих рассуждениях кроется ключ к вычислению силы или напряженности поля, когда потенциальная энергия известна.

Пусть потенциальная энергия тела в точке (х, у, z) дана, а мы хотим узнать, какая сила действует на него в этой точке. Для этого нужно знать потенциал не только в этой точке, но и в соседних. Почему? Попробуем вычислить x-компоненту силы (если мы это сумеем сделать, то точно таким же способом мы вычислим и у- и z-компоненты, определив тем самым всю силу). Если б мы сдвинули тело на малое расстояние Dx, то работа, произведенная силой над телом, равнялась бы x-компоненте силы, умноженной на Dx (если Dx достаточно мало), и должна была бы быть равна изменению потенциальной энергии при переходе от одной точки к другой:

DW=-DU=FxDx. (14.9)

Мы просто применили формулу ∫F·ds=-DU для очень

малых расстояний. Теперь разделим на Dx и обнаружим, что сила равна

Fx=-DU/Dx. (14.10)

Конечно, это не совсем точно. На самом деле нам нужно перейти в (14.10) к пределу при Dx, стремящемся к нулю, потому что (14.10) точно соблюдается только для бесконечно малых Dx. Мы узнаем в правой части (14.10) производную U по х и хотим написать -dUldx. Но U зависит и от х, и от у, и от z, и для такого случая математики придумали другое обозначение, которое рас­считано на то, чтобы напоминать нам, что надо быть очень ос­торожным, дифференцируя такую функцию. Этот символ напо­минает, что только х считается изменяющимся, а у и z нет. Вместо d они просто пишут «6 навыворот», или д. (По-моему, когда начинаешь изучать дифференциальные исчисления, то вообще лучше работать с д, а не с d; d всегда хочется сократить, а вот на д как-то рука не поднимается!) Итак, они пишут dU/dx, а иногда в припадке строгости, желая быть очень бдительными, они ставят за дх скобку с маленькими у, z внизу (dU/dx)yz, что означает: «Продифференцируй U по х, считая у и z по­стоянными». Но мы чаще всего не будем отмечать, что осталось постоянным, из контекста это всегда можно понять. Но зато всегда будем писать д вместо d как предупреждение о том, что эта производная берется при постоянных значениях прочих переменных. Ее называют частной производной, т. е. производ­ной, для вычисления которой меняют часть переменных, х.

Итак, мы обнаруживаем, что сила в направлении х равна минус частной производной U по х:

Fx=-дU/дx (14.11)

Точно так же и сила в направлении у получается дифференци­рованием U по у при постоянных х и z, а третья составляющая силы опять-таки есть производная по z при х и у постоянных:

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука