Читаем Feynmann 1 полностью

Изучая тончайшие свойства вещества на атомном уровне, не всегда легко разделить общую энергию на две части, потен­циальную и кинетическую, и не всегда такое разделение необ­ходимо. Во всяком случае, оно возможно почти всегда, так что давайте говорить, что оно всегда возможно и что потенциальная плюс кинетическая энергии мира постоянны. Итак, общая по­тенциальная плюс кинетическая энергии внутри целого мира постоянны, и если «мир» — это изолированный кусок вещества, то энергия его постоянна, если только нет внешних сил. Но, как мы видели, часть кинетической и потенциальной энергий предмета может быть внутренней (например, внутренние молекулярные движения), внутренней в том смысле, что мы ее не замечаем. Мы знаем, что в стакане воды все колеблется, все части беспрерывно движутся, так что внутри имеется определенная кинетическая энергия, на которую мы обычно никакого внимания не обраща­ем. Мы не замечаем движения атомов, рождающего теплоту, и поэтому не называем его кинетической энергией, но основа тепла — все-таки кинетическая энергия. Точно так же и внутрен­няя потенциальная энергия может, например, иметь форму химической энергии: когда мы сжигаем бензин, выделяется энер­гия, потому что потенциальные энергии атомов при новом их размещении оказываются ниже, чем при прежнем расположе­нии. Строго говоря, теплоту нельзя считать чисто кинетической энергией, в нее входит и часть потенциальной энергии; то же относится и к химической энергии, так что лучше объединить их и говорить, что общая кинетическая и потенциальная энергии внутри тела — это частично тепло, частично химическая энер­гия и т. д. Во всяком случае, все эти различные формы внутрен­ней энергии иногда рассматривают как «потерянную» энергию в том смысле, как сказано выше; когда мы изучим термодинами­ку, нам все это станет яснее.

В качестве другого примера возьмем трение. Неверно, что кинетическая энергия в результате трения исчезает; это не­верно, хотя скользящее тело и впрямь останавливается и кажется, что кинетическая энергия пропала. Но она не про­падает, ибо атомы внутри тела начинают двигаться с большим запасом кинетической энергии; хоть мы этого и не можем уви­деть, но можно догадаться об этом по повышению температуры. Конечно, если не обращать внимания на тепловую энергию, то теорема о сохранении энергии покажется неправильной.

Еще в одном случае может показаться, что энергия не сохраняется: когда мы изучаем часть всей системы. Вполне естественно, что если что-то взаимодействует с чем-то внешним и мы пренебрегаем этим взаимодействием, то теорема о сохра­нении энергии будет выглядеть неверной.

В классической физике в потенциальную энергию включались только тяготение и электричество, но теперь у нас есть и атом­ная энергия и многое другое. В классической теории, например, свет — это особая форма энергии, но можно, если нам этого хочется, представить себе энергию света как кинетическую энергию фотонов, и тогда наша формула (14.2) опять окажется справедливой.

§ 5. Потенциалы и поля

Теперь обратимся к некоторым идеям, связанным с потен­циальной энергией и с понятием поля. Пусть два больших тела А и В притягивают к себе третье малое тело с суммарной силой F. Мы уже отмечали в гл. 12, что сила притяжения частицы может быть представлена как произведение ее массы m на век­тор С, зависящий лишь от положения частицы:

F = mC.

Тяготение можно анализировать, считая, что в каждом месте пространства имеется вектор С, который «действует» на массу, помещенную в это место, но который присутствует там безот­носительно к тому, поместили ли мы туда массу или нет. Вектор С имеет три составляющие, и каждая из них является функцией от (х, y, z) — функцией положения в пространстве. Такую вещь мы называем полем и говорим, что тела А и В создают поле, т. е. «делают» вектор С. Когда тело помещено в поле, то сила дей­ствия на это тело равна его массе, умноженной на величину вектора поля в той точке, куда тело попало.

С потенциальной энергией можно сделать то же самое. Так как потенциальная энергия, интеграл от (Сила)·(ds), может быть записана в виде массы m, умноженной на интеграл от (Поле)·(ds) — это простое изменение масштаба, — то потен­циальную энергию U(x, у, z) тела, расположенного в точке (х, у, z), можно записать как произведение m на другую функ­цию. Назовем ее потенциалом y.. Интеграл ∫C·ds равен

-y, подобно тому как ∫F·ds=-U; они отличаются только

масштабом:

U= -∫F·ds=-m∫C·ds=my. (14.7)

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука