Читаем Feynmann 1 полностью

В природе существуют силы, скажем сила тяжести, обла­дающие замечательным свойством — «консервативностью» (ни­каких политических идей, ничего двусмысленного в этом поня­тии нет). Когда мы подсчитываем, какую работу выполняет сила, двигая тело от одной точки к другой, то вообще работа зависит от траектории; но в особых случаях эта зависи­мость пропадает. Если работа не зависит от траектории, мы говорим, что сила консервативна. Иными словами, если ин­теграл от произведения силы на приращения смещений между точками 1 и 2 (фиг. 14.2) один раз вычислен вдоль кривой А, а другой — вдоль кривой В, и оба раза получается одинаковое количество джоулей, и если это выполнено для любой кривой, соединяющей эту пару точек, и если это же справедливо для любой пары точек, то говорят, что сила консервативна. В таких обстоятельствах интеграл работы между точками 1 и 2 можно легко подсчитать и дать для него формулу. А в других случаях это не так просто: нужно задавать еще форму кривой; но когда работа не зависит от кривой, то, ясное дело, остается только зависимость от положений точек 1 и 2.

Чтобы доказать это, рассмотрим фиг. 14.2.

Фиг. 14.2. Возможные пути, соединяющие две точки в поле сил.

Фиксируем про­извольную точку Р. Криволинейный интеграл работы на участ­ке (1,2) можно вычислить, разбив его на две части: работу на участке (1, Р) и работу на участке (Р, 2), потому что сейчас у нас всюду консервативные силы, и по какому пути ни пойти, значение работы одно и то же. Работа перемещения из точки Р в любую точку пространства является функцией положения конечной точки. Она зависит и от Р, но мы во всем дальнейшем анализе точку Р закрепим, так что работа перемещения тела от точки Р к точке 2 будет некоторой функцией положения точ­ки 2. Она зависит от того, где находится точка 2; если перемес­тить тело в другую точку, ответ будет другой.

Обозначим эту функцию положения через -U(x, у, z); же­лая отметить, что речь идет именно о точке 2 с координатами x2, y2, z2, мы будем просто писать U(2), сокращая обозначение U(хг, у2, z2). Работу перемещения из точки 1 в точку Р можно написать, обратив направление интегрирования (переменив знаки всех ds). Другими словами, работа на участке (1,Р) равна работе на участке (P,1) со знаком минус:

Значит, работа на участке (Р,1) есть -U(1), а на участке (Р,2) есть -U(2). Поэтому интеграл от 1 до 2 равен -U(2) плюс [-U1) назад], т. е. + U(1)-U(2):

Величина U(1)-U(2) называется изменением потенциальной энергии, a U можно назвать потенциальной энергией. Мы бу­дем говорит, что когда предмет находится в положении 2, то он обладает потенциальной энергией U(2), а в положении 1 — потенциальной энергией U(1). Когда он находится в по­ложении Р, его потенциальная энергия равна нулю. Если бы вместо Р взять любую другую точку Q, то оказалось бы (это предоставляется доказать вам самим), что потенциальная энер­гия всех точек изменилась бы только на постоянную добавку. Так как сохранение энергии зависит только от изменений ее, то эта добавочная постоянная никакого значения не имеет. Вот поэтому точка Р произвольна.

Итак, у нас имеются два утверждения: 1) работа, выполняе­мая силой, равна изменению кинетической энергии системы, но 2) математически для консервативных сил выполненная ра­бота равна минус изменению функции U, называемой потен­циальной энергией. Как следствие этих утверждений возникает еще одно: если действуют только консервативные силы, сумма потенциальной U и кинетической Т энергий остается постоян­ной:

T+U=const. (14.2)

Рассмотрим формулу потенциальной энергии для ряда слу­чаев. Если поле тяготения однородно, если мы не поднимаемся до высот, сравнимых с радиусом Земли, то сила постоянна и направлена вертикально, а работа равна просто произведению силы на расстояние по вертикали. Стало быть,

U(z)=mgz, (14.3)

и за точку Р с нулевой потенциальной энергией можно принять любую точку на поверхности z=0. Но можно также говорить, что потенциальная энергия равна mg(z-6), если нам так уж этого хочется! Все результаты в нашем анализе останутся теми же, кроме того что потенциальная энергия на поверхности z=0 будет равна -mg6. Разницы никакой, ведь в расчет надо принимать только разности потенциальных энергий.

Энергия, необходимая для сжатия пружины на расстояние х от точки равновесия, равна

U(x)=1/2kx2 (14.4)

и нуль потенциальной энергии приходится на точку х=0, т. е. на равновесное состояние пружины. И здесь тоже мы можем до­бавить любую константу.

Потенциальная энергия тяготения точечных масс M и m на расстоянии r друг от друга равна

U(r)=-GMm/r. (14.5)

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука